首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/707684

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

EMR Spark Runtime Filter性能优化

背景 Join是一个非常耗费资源耗费时间的操作,特别是数据量很大的情况下。一般流程上会涉及底层表的扫描/shuffle/Join等过程, 如果我们能够尽可能的在靠近源头上减少参与计算的数据,一方面可以提高查询性能,另一方面也可以减少资源的消耗(网络/IO/CPU等),在同样的资源的情况下可以支撑更多的查询。 目前在SparkSQL中有Filter下推优化,包括两个维度: 生成Filter SparkSQL会从用户的SQL语句中获取到Filter 直接显示获取select * from A where a=1生成Filter(a=1) on A 隐式推断select * from A, B where A.a = B.b and A.a=1推断出Filter(b=1) on B Filter优化 利用生成的Filter算子可以优化,比如: 将Filt

使用Spark Streaming SQL基于时间窗口进行数据统计

1.背景介绍 流式计算一个很常见的场景是基于事件时间进行处理,常用于检测、监控、根据时间进行统计等系统中。比如埋点日志中每条日志记录了埋点处操作的时间,或者业务系统中记录了用户操作时间,用于统计各种操作处理的频率等,或者根据规则匹配,进行异常行为检测或监控系统告警。这样的时间数据都会包含在事件数据中,需要提取时间字段并根据一定的时间范围进行统计或者规则匹配等。使用Spark Streaming SQL可以很方便的对事件数据中的时间字段进行处理,同时Spark Streaming SQL提供的时间窗口函数可以将事件时间按照一定的时间区间对数据进行统计操作。本文通过讲解一个统计用户在过去5秒钟内点击网页次数的案例,介绍如何使用Spark Streaming SQL对事件时间进行操作。 2.时间窗语法说明 Spark Streaming SQ

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册