macOS下 Hive 2.x 的安装与配置
1 简介
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的[SQL]查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
Hive

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
好程序员分享ApacheSpark常见的三大误解
好程序员分享ApacheSpark常见的三大误解误解一:Spark是一种内存技术 大家对Spark最大的误解就是其是一种内存技术(in-memorytechnology)。其实不是这样的!没有一个Spark开发者正式说明这个,这是对Spark计算过程的误解。 我们从头开始说明。什么样的技术才能称得上是内存技术?在我看来,就是允许你将数据持久化(persist)在RAM中并有效处理的技术。然而Spark并不具备将数据数据存储在RAM的选项,虽然我们都知道可以将数据存储在HDFS,Tachyon,HBase,Cassandra等系统中,但是不管是将数据存储在磁盘还是内存,都没有内置的持久化代码(nativepersistencecode)。它所能做的事就是缓存(cache)数据,而这个并不是数据持久化(persist)。已经缓存的数据可以很容易地被删除,并且在后期需要时重新计算。 但是即使有这些信息,仍然有些人还是会认为Spark就是一种基于内存的技术,因为Spark是在内存中处理数据的。这当然是对的,因为我们无法使用其他方式来处理数据。操作系统中的API都只能让你把数据从块设备加载到内存...
-
下一篇
SpringBoot使用Graylog日志收集
本文介绍SpringBoot如何使用Graylog日志收集。 1.Graylog介绍 Graylog是一个生产级别的日志收集系统,集成Mongo和Elasticsearch进行日志收集。其中Mongo用于存储Graylog的元数据信息和配置信息,ElasticSearch用于存储数据。 架构图如下: 生产环境配置图如下: 2.安装Graylog 在官方文档上推荐了很多种安装的方式,这里以docker-compose的方式为例,进行安装Graylog,mongo,elasticsearch。 docker-compose.yml内容如下(这里是在官网的基础上改了一下): version: '2' services: # MongoDB: https://hub.docker.com/_/mongo/ mongodb: image:
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS7,8上快速安装Gitea,搭建Git服务器
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- CentOS7,CentOS8安装Elasticsearch6.8.6
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS8编译安装MySQL8.0.19
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- Docker安装Oracle12C,快速搭建Oracle学习环境
- Hadoop3单机部署,实现最简伪集群
- MySQL数据库在高并发下的优化方案