开源大数据周刊-第104期
资讯
从智能手机到可穿戴设备,从医疗到汽车以及工业制造,边缘计算正在上演一个又一个行业传奇,它的落脚点是要让终端成为更智慧的存在——能够实时处理数据、能够低延时做出反馈——这不就是我们期待中的智能设备吗?
不久前,Facebook 在首届 PyTorch 开发者大会发布了 PyTorch1.0 预览版,标志着这一框架更为稳定可用。从去年年初发布以来,PyTorch 已经成为明星框架,发展速度甚至有力压 TensorFlow 的趋势。据网友统计,在最新的 ICLR 2019 提交论文中,提及 TensorFlow 的论文数量从 228 升到了 266,而提及 PyTorch 的论文数量从 2018 年的 87 激增到了 252,这是否也是

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
阿里云Elasticsearch 智能化运维实践
背景 Elasticsearch作为一个开箱即用的搜索引擎,其丰富的功能和极低的使用门槛吸引着越来越多的公司和用户选择它作为搜索和数据分析的工具。用户在运维Elasticsearch集群时往往会遇到很多难题,具体来说有下面列举的几点: 使用方式往往比较粗糙,默认的设置并不适合每一个集群和业务,非精细化的设计将会极大的增加集群隐患; 集群出现问题,无法及时定位原因、寻找解决方案,低效的沟通或者解决问题的方式可能会使得问题变得愈发严重; ES提供的监控指标繁杂,指标多,意义不明确,需要一定的专业知识才可以理解,缺乏全局视角; 此外,集群潜在的异常无法发现,更不能及时规避风险。 随着越来越多的用户选择使用阿里云ES服务来支持搜索和分析业务,上述这些问题越发明显,用户和实例数量的快速增长,让我们没有太多的精力去逐一对接所有用户的问题,这无形中
- 下一篇
数据科学家的自我修养 | 哪些技能是必不可少的?
市场上对数据科学家的要求特别多:需要掌握机器学习、计算机科学、统计学、数学、数据可视化,深度学习等知识。要想全部掌握这些方面的知识,科学家需要学习数十种语言、框架和技术。那么,为此数据科学家应该如何合理地分配时间,该掌握哪些技能呢? 在本文中,我对求职网站进行搜索,找出对数据科学家的技能要求。我分别分析了通常的数据科学技能和特定语言以及工具。我具体搜索了2018年10月10日LinkedIn、Indeed、SimplyHired、Monster、以及AngelList这些求职网站。以下图表显示了在每个网站中发布了多少数据分析师工作。 我分析了许多工作列表和调查,想列出当中最常见的技能要求。“管理”这类词没有包含在内,因为许多求职发布中都会包含这个词。 全部搜索都是针对美国地区,关键词中带有“数据科学家”的职位发布,并使用精确匹配搜索减少了结果数量。但是,这种方法确保结果与数据科学家职位相关,并且影响所有搜索项。 AngelList中提供的是招聘数据科学家的公司数量,而不是职位数量。我将AngelList排除在这两种分析之外,因为它的搜索算法是OR的逻辑搜索,而且无法将其修改为AND。如...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- Windows10,CentOS7,CentOS8安装Nodejs环境
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Windows10,CentOS7,CentOS8安装MongoDB4.0.16
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- CentOS6,CentOS7官方镜像安装Oracle11G
- Red5直播服务器,属于Java语言的直播服务器
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- SpringBoot2整合Thymeleaf,官方推荐html解决方案
- SpringBoot2整合Redis,开启缓存,提高访问速度