这些常见的机器学习工具,不知道的快来补课
随着人工智能的火热,很多企业甚至是数据挖掘爱好者开始尝试自己动手来挖掘数据中的价值。机器学习的基础设施包括数据、算法和工具。前面已经介绍了数据和算法方面的内容,本文将重点介绍机器学习工具。 机器学习工具从计算能力上来讲可以分为两种,即单机计算和集群计算。本文会分别对单机版机器学习工具、开源分布式机器学习工具以及企业级云机器学习工具进行介绍,如图1-1所示。 图1-1 机器学习工具 首先介绍单机版的机器学习工具。如果读者有过数据挖掘的经历,一定会对下面几款工具都有一定了解:SPSS和R。这些都是单机版机器学习工具的代表,每一款产品都有自己的特点,SPSS的操作更方便,R的画图功能比较简洁。 单机版工具的特点就是安装方便,比较好上手,因为单机版工具不依赖于底层计算集群的配置。 但是单机版工具在计算能力上不能与分布式机器学习工具相提并论,往往只能进行一些数据的实验或者画图展示,在企业级数据处理和业务服务上相对比较乏力。 介绍完单机版机器学习工具之后,接下来讲一下分布式机器学习工具。笔者认为,真正的智能计算平台一定是具备处理大规模数据、提供丰富算法能力的计算平台。通常来讲,一套完整的机器学习工...