TableStore时序数据存储 - 架构篇
背景

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
TableStore数据模型 - WideColumn和Timeline
前言 TableStore是阿里云自研首款分布式多模型数据库,属于NoSQL的类别。提到NoSQL数据库,现在对很多应用研发来说都已经不再陌生。当前很多应用系统底层不会再仅仅依赖于关系型数据库,而是会根据不同的业务场景,来选型使用不同类型的数据库,例如缓存型KeyValue数据会存储在Redis,文档型数据会存储在MongoDB,图数据会存储在Neo4J等。 回顾下NoSQL的发展历程,NoSQL诞生于Web 2.0时代,互联网高速发展的一个时代,也带来了一次互联网数据的爆发。传统的关系型数据库很难承载如此海量的数据,需要一种具备高扩展能力的分布式数据库。但基于传统的关系数据模型,去实现高可用和可扩展的分布式数据库是非常有挑战的一件事。互联网上大部分数据的数据模型很简单,没必要一概用关系模型来建模。如果能打破关系模型以一种更简单的数据
-
下一篇
流式计算
从spark 说起,谈谈“流式”计算的理解 spark是一个大数据分布式的计算框架,有一些并行计算的基础会更容易理解分布式计算框架的概念。对比并行计算,谈三个概念: 并行计算 Map Reduce 算子 RDD数据结构 并行计算 spark的任务分为1个driver、多个executor。程序启动driver,driver发送执行的程序(jar)到executor,executor在多台机器并行执行。driver和executor可以理解为进程,像httpd一样,完成某些任务,接受并发送数据的进程。 不同的spark任务都需要分配driver、executor。此时,还需要提供资源管理的应用,包括计算资源和内存资源的。 我们采用YARN作为spark资源管理系统,Mesos是另一个资源管理框架。 YARN Map Reduce 算子 大数据与并行计算的最大区别,我认为就在map reduce算子上。 并行计算更喜欢做“关门打狗”的应用,高度并行,线程之间不做交互,例如口令破译,造表等。 spark中,用transform 和 action代替map Reduce操作。transform...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS7,CentOS8安装Elasticsearch6.8.6
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- CentOS8编译安装MySQL8.0.19
- MySQL数据库在高并发下的优化方案
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- MySQL8.0.19开启GTID主从同步CentOS8
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- CentOS7,8上快速安装Gitea,搭建Git服务器