Flume+Kafka+Storm+Redis构建大数据实时处理系统
一、大数据处理的常用方法 之前在《采集→清洗→处理:基于MapReduce的离线数据分析》中已经有提及到,这里依然给出下面的图示: 前面给出的那篇文章是基于MapReduce的离线数据分析案例,其通过对网站产生的用户访问日志进行处理并分析出该网站在某天的PV、UV等数据。 对应上面的图示,其走的就是离线处理的数据处理方式,而这里即将要介绍的是另外一条路线的数据处理方式,即基于Storm的在线处理。在下面给出的完整案例中,我们将会完成下面的几项工作: 如何一步步构建我们的实时处理系统(Flume+Kafka+Storm+Redis)实时处理网站的用户访问日志,并统计出该网站的PV、UV将实时分析出的PV、UV动态地展示在我们的前面页面上 如果你对上面提及的大数据组件已经有所认识,或者对如何构建大数据实时处理系统感兴趣,那么就可以尽情阅读下面的内容了。 需要注意的是,核心在于如何构建实时处理系统,而这里给出的案例是实时统计某个网站的PV、UV,在实际中,基于每个人的工作环境不同,业务不同,因此业务系统的复杂度也不尽相同,相对来说,这里统计PV、UV的业务是比较简单的,但也足够让我们对大数据...






