Flink SQL 功能解密系列 —— 维表 JOIN 与异步优化
引子
流计算中一个常见的需求就是为数据流补齐字段。因为数据采集端采集到的数据往往比较有限,在做数据分析之前,就要先将所需的维度信息补全。比如采集到的交易日志中只记录了商品 id,但是在做业务时需要根据店铺维度或者行业纬度进行聚合,这就需要先将交易日志与商品维表进行关联,补全所需的维度信息。这里所说的维表与数据仓库中的概念类似,是维度属性的集合,比如商品维,地点维,用户维等等。
在流计算中,这是一个典型的 stream-to-table jon 的问题。本文主要讲解在 Flink SQL 中是如何解决这个问题的,用户如何简单上手使用这个功能。
维表 JOIN 语法
由于维表是一张不断变化的表(静态表只是动态表的一种特例)。那如何 JOIN 一张不断变化的表呢?如果用传统的 JOIN 语法SELECT * FROM T JOIN dim_ta