spark 类标签的稀疏 特征向量
一个向量(1.0,0.0,3.0)它有2中表示的方法 密集:[1.0,0.0,3.0] 其和一般的数组无异 稀疏:(3,[0,2],[1.0,3.0]) 其表示的含义(向量大小,序号,值) 序号从0开始 本地向量和矩阵 本地向量(Local Vector)存储在单台机器上,索引采用0开始的整型表示,值采用Double类型的值表示。Spark MLlib中支持两种类型的矩阵,分别是密度向量(Dense Vector)和稀疏向量(Spasre Vector),密度向量会存储所有的值包括零值,而稀疏向量存储的是索引位置及值,不存储零值,在数据量比较大时,稀疏向量才能体现它的优势和价值。下面给出其应用示例: import org.apache.spark.mllib.linalg.{Vector, Vectors} //密度矩阵,零值也存储 scala> val dv: Vector = Vectors.dense(1.0, 0.0, 3.0) dv: org.apache.spark.mllib.linalg.Vector = [1.0,0.0,3.0] // 创建稀疏矩阵,指定...