Spark SQL概念学习系列之Spark SQL 优化策略(五)
查询优化是传统数据库中最为重要的一环,这项技术在传统数据库中已经很成熟。除了查询优化,Spark SQL 在存储上也进行了优化,从以下几点查看 Spark SQL 的一些优化策略。(1)内存列式存储与内存缓存表 Spark SQL 可以通过 cacheTable 将数据存储转换为列式存储,同时将数据加载到内存进行缓存。 cacheTable 相当于在分布式集群的内存物化视图,将数据进行缓存,这样迭代的或者交互式的查询不用再从 HDFS 读数据,直接从内存读取数据大大减少了 I/O 开销。列式存储的优势在于 Spark SQL 只需要读出用户需要的列,而不需要像行存储那样需要每次将所有列读出,从而大大减少内存缓存数据 量,更高效地利用内存数据缓存,同时减少网络传输和 I/O 开销。数据按照列式存储,由于是数据类型相同的数据连续存储,能够利用序列化和压缩减少内存空间的占用。 (2)列存储压缩 为了减少内存和硬盘空间占用, Spark SQL 采用了一些压缩策略对内存列存储数据 进 行 压 缩。 Spark SQL 的 压 缩 方 式 要 比 Shark 丰 富 很 多, 例 如 它 ...
