首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/506620

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

hadoop streaming 语法

1、hadoop streaming 命令格式 $HADOOP_HOME/bin/hadoop jar hadoop-streaming.jar \ -D mapred.job.name="streaming_wordcount" \ -D mapred.map.tasks=3 \ -D mapred.reduce.tasks=3 \ -D mapred.job.priority=3 \ -input /input/ \ -output /output/ \ -mapper python mapper.py \ -reducer python reducer.py \ -file ./mapper.py \ -file ./reducer.py 参数说明 mapred.job.name:作业名称 mapred.map.tasks:map任务数量 mapred.reduce.tasks:reduce任务数量 mapred.job.priority:作业优先级 -input:在HDFS上的作业输入路径,支持通配符,支持多个文件 -output:在HDFS上的作业结果输出路径 -mapper...

Hadoop MapReduce计算框架

1、MapReduce理论 1.1、MapReduce是什么? MapReduce用于处理海量数据的分布式计算框架,是Hadoop生态中的核心之一(MapReduce用于计算海量数据,HDFS用于存储海量数据);MapReduce是谷歌公司在研究如何处理海量数据所提出的一种面向大规模数据处理的并行计算模型和方法。 1.2、MapReduce概述 MapReduce是一个计算框架,用于对大数据进行处理,它的主要思想就是“分而治之”;整个MapReduce计算过程可以分为Map(映射)阶段和Reduce(缩减阶段);一个Map/Reduce 作业(job) 通常会把输入的数据集切分为若干独立的数据块,由 map任务(task)以完全并行的方式处理它们。框架会对Map的输出先进行排序, 然后把结果输入给Reduce任务。通常作业的输入和输出都会被存储在文件系统(HDFS)中。 整个框架负责任务的调度和监控,以及重新执行已经失败的任务。 Map/Reduce框架由一个单独的master JobTracker 和每个集群节点一个slave TaskTracker共同组成。master负责调度构成...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册