首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/181458

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Hadoop何以快速成为最佳网络安全工具?

pache Hadoop 今年10岁了 这个以处理大量数据的实验做为开端的开源软件框架,已经稳步成长为以前所未有的方式解锁信息价值的成熟企业解决方案。今天,企业运用Hadoop解决各种各样的问题,从改善人类健康,到挖掘最大金融投资潜力,等等等等。10年间,业内见证了一个以Hadoop为中心的庞大生态系统的诞生和快速发展。 现代企业场景里,安全和风险从业者迅速认识到,数据洞见是理解、识别和解决企业威胁的关键。 我们开始意识到,网络安全,从很多方面上讲,就是个数据分析问题。正是由于这个原因,Hadoop,携其对海量数据的吸收、处理和分析能力,被广泛采纳来解决我们面临的各种挑战。 安全方面,Hadoop让用户可以圈住他们企业产出的所有数据。他们对网络、用户、终端乃至物联网(IoT)产生的信息都有完全的访问权——正是生产对可疑行为、异常和其他威胁指标的分析结果所需的那些东西。除此之外,Hadoop还能让企业可以利用机器学习和各种灵活的即插即用程序,无论它们来自专利产品还是开源市场。有了Hadoop,你就有了足以应付当前和新兴挑战的解决方案。 情况并不总是这样的。10年前,安全社区中很多人都觉得...

轻量级大规模机器学习算法库Fregata开源:快速,无需调参

一. 大规模机器学习的挑战 随着互联网,移动互联网的兴起,可以获取的数据变得越来越多,也越来越丰富。数据资源的丰富,给机器学习带来了越来越多,越来越大创造价值的机会。 机器学习在计算广告,推荐系统这些价值上千亿美元的应用中起到的作用越来越大,创造的价值也越来越大。但是越来越大的数据规模也给机器学习带来了很多挑战。 最大的挑战就是庞大的数据量使得对计算资源的需求也急剧增长。首先经典的机器学习算法其计算量基本上都是与训练数据条数或者特征数量呈二次方甚至是三次方关系的[1]。即是说数据量或者特征数每翻一倍,则计算量就要增加到原来的四倍,甚至是八倍。这样的计算量增长是十分可怕的,即使是采用可扩展的计算机集群一难以满足这样的计算量增长。好在对于很多依赖于凸优化方法的算法,可以采用随机梯度下降方法,将计算量的增长降到基本与数据量和特征数呈线性关系。但是,大规模机器学习在计算上依然有三个比较大的困难。 第一,因为几乎所有的机器学习算法都需要多次扫描数据,对于大规模数据无论在什么平台上,如果不能全部存储在内存中,就需要反复从磁盘存储系统中读取数据,带来巨大的IO开销。在很多情况下,IO开销占到整个训练...

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Oracle

Oracle

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小、微机环境。它是一种高效率、可靠性好的、适应高吞吐量的数据库方案。

Apache Tomcat

Apache Tomcat

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。