《Hive编程指南》一1.1 Hadoop和MapReduce综述
本节书摘来异步社区《Hive编程指南》一书中的第1章,第1.1节,作者: 【美】Edward Capriolo , Dean Wampler , Jason Rutherglen 译者: 曹坤,更多章节内容可以访问云栖社区“异步社区”公众号查看。 1.1 Hadoop和MapReduce综述 如果用户已经熟悉Hadoop和MapReduce计算模型的话,那么可以跳过本节。虽然用户无需精通MapReduce就可以使用Hive,但是理解MapReduce的基本原理将帮有助于用户了解Hive在底层是如何运作的,以及了解如何才能更高效地使用Hive。 我们在这里提供了一个关于Hadoop和MapReduce的简要描述。更多细节,请参考Tom White (O’Reilly)所著的《Hadoop权威指南》一书。 MapReduceMapReduce是一种计算模型,该模型可将大型数据处理任务分解成很多单个的、可以在服务器集群中并行执行的任务。这些任务的计算结果可以合并在一起来计算最终的结果。 MapReduce编程模型是由谷歌(Google)开发的。Google通过一篇很有影响力的论文对这个计算模...