首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/87419

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

《深入理解Spark:核心思想与源码分析》——3.5节Hadoop相关配置及Executor环境变量

本节书摘来自华章社区《深入理解Spark:核心思想与源码分析》一书中的第3章,第3.5节Hadoop相关配置及Executor环境变量,作者耿嘉安,更多章节内容可以访问云栖社区“华章社区”公众号查看 3.5 Hadoop相关配置及Executor环境变量3.5.1 Hadoop相关配置信息默认情况下,Spark使用HDFS作为分布式文件系统,所以需要获取Hadoop相关配置信息的代码如下。val hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(conf)获取的配置信息包括:将Amazon S3文件系统的AccessKeyId和SecretAccessKey加载到Hadoop的Configuration;将SparkConf中所有以spark.hadoop.开头的属

HBase二级索引与Join

二级索引与索引Join是多数业务系统要求存储引擎提供的基本特性,RDBMS早已支持,NOSQL阵营也在摸索着符合自身特点的最佳解决方案。 这篇文章会以HBase做为对象来讨论如何基于Hbase构建二级索引与实现索引join。文末同时会列出目前已知的包括0.19.3版secondary index, ITHbase, Facebook方案和官方Coprocessor的介绍。 理论目标在HBase中实现二级索引与索引Join需要考虑三个目标: 1,高性能的范围检索。 2,数据的低冗余(存储所占的数据量)。 3,数据的一致性。 性能与数据冗余,一致性是相互制约的关系。 如果你实现了高性能地范围检索,必然需要靠冗余索引数据来提升性能,而数据冗余会导致更新数据时难以实现一致性,特别是分布式场景下。 如果你不要求高效地范围检索,那么可以不考虑产生冗余数据,一致性问题也可以间接避免,毕竟share nothing是公认的最简单有效的解决方案。 理论结合实际,下文会以实例的方式来阐述各个方案是如何选择偏重点。 这些方案是经过笔者资料查阅和同事的不断交流后得出的结论,如有错误,欢迎指正: 1,按索引建表...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

用户登录
用户注册