Flink - TypeInformation

Flink 自己创建一套独立的类型系统,

参考, https://ci.apache.org/projects/flink/flink-docs-release-0.10/internals/types_serialization.html

为何要自己搞一套,而不像其他的平台一样让编程语言或serialization framework来天然做掉?

Flink tries to know as much information about what types enter and leave user functions as possible. This stands in contrast to the approach to just assuming nothing and letting the programming language and serialization framework handle all types dynamically.

  • To allow using POJOs and grouping/joining them by referring to field names, Flink needs the type information to make checks (for typos and type compatibility) before the job is executed.

  • The more we know, the better serialization and data layout schemes the compiler/optimizer can develop. That is quite important for the memory usage paradigm in Flink (work on serialized data inside/outside the heap and make serialization very cheap).

  • For the upcoming logical programs (see roadmap draft) we need this to know the “schema” of functions.

  • Finally, it also spares users having to worry about serialization frameworks and having to register types at those frameworks.

Note. POJOs是什么?Plain Old Java Object(简单的Java对象),即轻量java对象的花式叫法

主要的理由,

第一是要做类型检查,Flink支持比较灵活的基于field的join或group,需要先检查这个field是否可以作为key,或这个field是否可以做join或group

第二是性能优化,便于使用更好的序列化和数据的layout

Flink主要定义如下几种类型,

Internally, Flink makes the following distinctions between types:

  • Basic types: All Java primitives and their boxed form, plus voidString, and Date.

  • Primitive arrays and Object arrays

  • Composite types

    • Flink Java Tuples (part of the Flink Java API)

    • Scala case classes (including Scala tuples)

    • POJOs: classes that follow a certain bean-like pattern

  • Scala auxiliary types (Option, Either, Lists, Maps, …)

  • Generic types: These will not be serialized by Flink itself, but by Kryo.

基本类型

数组(包含Primitive数组和对象数组)

组合类型,包含Flink Tuples, Scala case classes, 和POJOS

Scala增加的辅助类型

泛型,这个Flink不处理,而是用kryo

这里尤其需要注意POJOs,因为它的field是可以直接用name引用的,非常方便

dataSet.join(another).where("name").equalTo("personName")

那么对于Flink的准确的POJO的定义是什么?

  • The class is public and standalone (no non-static inner class)
  • The class has a public no-argument constructor
  • All fields in the class (and all superclasses) are either public or or have a public getter and a setter method that follows the Java beans naming conventions for getters and setters.

很简单,只要满足上面的规范,就支持“by-name” field referencing

文档里面还描述了在Scala和Java API中的类型问题,

对于Scala,用manifest或typetag来解决了泛型擦除的问题,所以主要是Flink用macro实现了TypeInformation,便于使用

对于Java,就必须要解决泛型擦除的问题,

DataSet<SomeType> result = dataSet
    .map(new MyGenericNonInferrableFunction<Long, SomeType>())
        .returns(SomeType.class);
比如,上面的日志,如果不加最后的hints,在runtime其实是无法知道SomeType是什么的,在编译的时候已经被erase成Object

所以Flink使用returns原语来增加hints

 

来看看源码,

基类为,

package org.apache.flink.api.common.typeinfo;
TypeInformation

目的, This type information class acts as the tool

to generate serializers and comparators
to perform semantic checks such as whether the fields that are uses as join/grouping keys actually exist.
bridges between the programming languages object model and a logical flat schema

前两个目的好理解,

最后一个目的,搞清两个概念,

arity,the number of fields it contains directly 
total number of fields,number of fields in the entire schema of this type, including nested types

举个例子,

* public class InnerType {
* public int id;
* public String text;
* }
*
* public class OuterType {
* public long timestamp;
* public InnerType nestedType;
* }

对于Inner type,arity和fields都是2

但对于OuterType,虽然arity是2,但fields是3,因为要把嵌套类型的fields也算上,这就是把编程语言对象模型转换为flat的逻辑schema

如何算fields的规则如下:

*   <li>Basic types are indivisible and are considered a single field.</li>
* <li>Arrays and collections are one field</li>
* <li>Tuples and case classes represent as many fields as the class has fields</li>

 

IntegerTypeInfo
用这个作为例子,分析一下
public class IntegerTypeInfo<T> extends NumericTypeInfo<T> 
public abstract class NumericTypeInfo<T> extends BasicTypeInfo<T> 
public class BasicTypeInfo<T> extends TypeInformation<T> implements AtomicType<T>

可以看到Integer最终继承到BasicType,BasicType除了继承TypeInformation还实现AtomicType接口,

public interface AtomicType<T> {   

TypeComparator<T> createComparator(boolean sortOrderAscending, ExecutionConfig executionConfig);
}
* An atomic type is a type that is treated as one indivisible unit and where the entire type acts
* as a key.
* In contrast to atomic types are composite types, where the type information is aware of the individual
* fields and individual fields may be used as a key.
atomic类型就是不可分的类型,不像composite类型还包含其他的field,所以atomic本身整个作为key,基本类型如int肯定是属于atomic类型的
 
在BasicTypeInfo中定义了所有基本类型的TypeInfo,
复制代码
    public static final BasicTypeInfo<String> STRING_TYPE_INFO = new BasicTypeInfo<String>(String.class, new Class<?>[]{}, StringSerializer.INSTANCE, StringComparator.class);
    public static final BasicTypeInfo<Boolean> BOOLEAN_TYPE_INFO = new BasicTypeInfo<Boolean>(Boolean.class, new Class<?>[]{}, BooleanSerializer.INSTANCE, BooleanComparator.class);
    public static final BasicTypeInfo<Byte> BYTE_TYPE_INFO = new IntegerTypeInfo<Byte>(Byte.class, new Class<?>[]{Short.class, Integer.class, Long.class, Float.class, Double.class, Character.class}, ByteSerializer.INSTANCE, ByteComparator.class);
    public static final BasicTypeInfo<Short> SHORT_TYPE_INFO = new IntegerTypeInfo<Short>(Short.class, new Class<?>[]{Integer.class, Long.class, Float.class, Double.class, Character.class}, ShortSerializer.INSTANCE, ShortComparator.class);
    public static final BasicTypeInfo<Integer> INT_TYPE_INFO = new IntegerTypeInfo<Integer>(Integer.class, new Class<?>[]{Long.class, Float.class, Double.class, Character.class}, IntSerializer.INSTANCE, IntComparator.class);
    public static final BasicTypeInfo<Long> LONG_TYPE_INFO = new IntegerTypeInfo<Long>(Long.class, new Class<?>[]{Float.class, Double.class, Character.class}, LongSerializer.INSTANCE, LongComparator.class);
    public static final BasicTypeInfo<Float> FLOAT_TYPE_INFO = new FractionalTypeInfo<Float>(Float.class, new Class<?>[]{Double.class}, FloatSerializer.INSTANCE, FloatComparator.class);
    public static final BasicTypeInfo<Double> DOUBLE_TYPE_INFO = new FractionalTypeInfo<Double>(Double.class, new Class<?>[]{}, DoubleSerializer.INSTANCE, DoubleComparator.class);
    public static final BasicTypeInfo<Character> CHAR_TYPE_INFO = new BasicTypeInfo<Character>(Character.class, new Class<?>[]{}, CharSerializer.INSTANCE, CharComparator.class);
    public static final BasicTypeInfo<Date> DATE_TYPE_INFO = new BasicTypeInfo<Date>(Date.class, new Class<?>[]{}, DateSerializer.INSTANCE, DateComparator.class);
    public static final BasicTypeInfo<Void> VOID_TYPE_INFO = new BasicTypeInfo<Void>(Void.class, new Class<?>[]{}, VoidSerializer.INSTANCE, null);
复制代码

可以看到Byte,short,int,long都用的是IntegerTypeInfo

创建的4个参数分别为,以INT_TYPE_INFO为例,

class对象,Integer.class

可能被cast成的类型,所以对于Integer,被cast成long,float,double,character都是可以的

Serializer对象

Comparator对象

可以看到flink重新封装了所有对象的Serializer和Comparator

我们看下LongSerializer,

@Override
public void serialize(Long record, DataOutputView target) throws IOException {
    target.writeLong(record.longValue());
}

很高效的,对于Long,只会序列化真正的longValue,而不会存多余的东西

 

NumericTypeInfo,只是一种特殊的BasicTypeInfo

复制代码
    private static final Set<Class<?>> numericalTypes = Sets.<Class<?>>newHashSet(
            Integer.class,
            Long.class,
            Double.class,
            Byte.class,
            Short.class,
            Float.class,
            Character.class
    );
复制代码

只有上面这几种class对象,才被认为是NumericTypeInfo

而IntegerTypeInfo,只是范围的进一步缩小,

复制代码
    private static final Set<Class<?>> integerTypes = Sets.<Class<?>>newHashSet(
            Integer.class,
            Long.class,
            Byte.class,
            Short.class,
            Character.class
    );
复制代码
 

除了上面的AtomicType,还有如array的typeinfo

比如,BasicArrayTypeInfo

优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/73207

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

相关文章

发表评论

资源下载

更多资源
优质分享Android(本站安卓app)

优质分享Android(本站安卓app)

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Eclipse(集成开发环境)

Eclipse(集成开发环境)

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。

Java Development Kit(Java开发工具)

Java Development Kit(Java开发工具)

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。

Sublime Text 一个代码编辑器

Sublime Text 一个代码编辑器

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。