k8s api文档 调用heapster metrics
restful api访问k8s集群,增删改查信息,做界面二次开 发。
需要预先创建访问权限的配置。
官网api文档
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.9/
版本更新到v1.10以后 上面这个链接就找不到了 要把v1.9改成v1.10才能访问。
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
下面罗列部分api
curl -u admin:admin "https://localhost:6443/api/v1" -k
curl -u admin:admin "https://localhost:6443/api/v1/pods" -k
curl -u admin:admin "https://localhost:6443/api/v1/namespaces/{namespace}/pods" -k
curl -u admin:admin "https://localhost:6443/api/v1/namespaces/default/pods" -k
获取节点信息
curl -u admin:admin "https://localhost:6443/api/v1/nodes/{nodename}" -k
curl -u admin:admin "https://localhost:6443/api/v1/nodes/tensorflow1" -k
...
"status": {
"capacity": {
"cpu": "4",
"memory": "7970316Ki",
"pods": "110"
},
"allocatable": {
"cpu": "4",
"memory": "7867916Ki",
"pods": "110"
},
...
获取namespace信息
curl -u admin:admin "https://localhost:6443/api/v1/namespaces/{namespace}" -k
curl -u admin:admin "https://localhost:6443/api/v1/namespaces/default" -k
获得quota信息
curl -u admin:admin "https://localhost:6443/api/v1/namespaces/{namespace}/resourcequotas/" -k
curl -u admin:admin "https://localhost:6443/api/v1/namespaces/default/resourcequotas/" -k
实践
k8s_master_ip:192.168.1.138
username 不同用户不同
password 不同用户不同
namespace 不同用户不同
1.查看容器
curl -u {username}:{password} "https://{k8s_master_ip}:6443/api/v1/namespaces/{namespace}/pods/" -k
curl -u admin:admin "https://192.168.1.138:6443/api/v1/namespaces/default/pods/" -k # > pods.txt 输出到 \\192.168.1.138\hadoop\info\pods.json了
看起来像是把所有的pod都拿出来了,包括活的和死的。
看了一下信息很多不过没有资源使用信息。
"phase": "Running"
这个是正在运行的pod
"phase": "Failed"
"reason":"Evicted"
这种是删除了的,状态是failed 原因是被驱逐
增加continue参数取出正在运行的容器
curl -u {username}:{password} "https://{k8s_master_ip}:6443/api/v1/namespaces/{namespace}/pods?continue" -k
curl -u admin:admin "https://192.168.1.138:6443/api/v1/namespaces/default/pods?continue" -k
2.查看资源总览resourcequotas
curl -u {username}:{password} "https://{k8s_master_ip}:6443/api/v1/namespaces/{namespace}/resourcequotas/" -k
[root@tensorflow1 info]# curl -u admin:admin "https://localhost:6443/api/v1/namespaces/default/resourcequotas/" -k
...
"status": {
"hard": {
"limits.cpu": "2",
"limits.memory": "6Gi",
"pods": "20",
"requests.cpu": "1",
"requests.memory": "1Gi"
},
"used": {
"limits.cpu": "400m",
"limits.memory": "1Gi",
"pods": "2",
"requests.cpu": "200m",
"requests.memory": "512Mi"
}
}
...
hard是限额 used是当前申请的限额
limits 和 requests 的区别是 limits是上限,不能突破,但不保证能给。 requests是下限,保证能给。 举例说明:一个容器 requests.memory 512Mi,limits.memory 1Gi。宿主机内存使用量高时,一定会留512Mi内存给这个容器,不一定能拿到1Gi内存。宿主机内存使用量低时,容器不能突破1Gi内存。
Gi 和 G 的区别是 Gi是1024进制,G是1000进制,M Mi也是同理。就像一个U盘8G但实际能使用的是7.45G(其实这里单位就是Gi)
pods是指容器,单位个
cpu单位 m指千分之一,200m即0.2个cpu。这是绝对值,不是相对值。比如0.1CPU不管是在单核或者多核机器上都是一样的,都严格等于0.1CPU core
实时数据
官方文档
https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/
https://github.com/kubernetes/metrics
https://github.com/kubernetes-incubator/metrics-server
下载 metrics-server 压缩包文件
下载 googlecontainer/metrics-server-amd64:v0.2.0
cd metrics-server-0.2.1/deploy
修改 metrics-server-deployment.yaml 文件 image 和 imagePullPolicy: IfNotPresent
kubectl create -f .
获取节点信息
curl -u {username}:{password} "https://{k8s_master_ip}:6443/apis/metrics.k8s.io/v1beta1/nodes" -k
curl -u admin:admin "https://192.168.1.138:6443/apis/metrics.k8s.io/v1beta1/nodes" -k
{
"kind": "NodeMetricsList",
"apiVersion": "metrics.k8s.io/v1beta1",
"metadata": {
"selfLink": "/apis/metrics.k8s.io/v1beta1/nodes"
},
"items": [
...
{
"metadata": {
"name": "tensorflow1",
"selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/tensorflow1",
"creationTimestamp": "2018-04-09T08:44:17Z"
},
"timestamp": "2018-04-09T08:44:00Z",
"window": "1m0s",
"usage": {
"cpu": "265m",
"memory": "3448228Ki"
}
}
...
]
}
获取pod信息
curl -u {username}:{password} "https://{k8s_master_ip}:6443/apis/metrics.k8s.io/v1beta1/namespaces/{namespace}/pods" -k
curl -u admin:admin "https://192.168.1.138:6443/apis/metrics.k8s.io/v1beta1/namespaces/default/pods" -k
{
"kind": "PodMetricsList",
"apiVersion": "metrics.k8s.io/v1beta1",
"metadata": {
"selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods"
},
"items": [
...
{
"metadata": {
"name": "tensorflow-worker-rc-998wf",
"namespace": "default",
"selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/tensorflow-worker-rc-998wf",
"creationTimestamp": "2018-04-09T08:52:38Z"
},
"timestamp": "2018-04-09T08:52:00Z",
"window": "1m0s",
"containers": [
{
"name": "worker",
"usage": {
"cpu": "0",
"memory": "39964Ki"
}
}
]
}
...
]
}
获取namespace信息
没找到url,就把上面获取pod的使用量全加起来就是namespace的使用量了
弃用的数据获取
参考 https://jimmysong.io/posts/using-heapster-to-get-object-metrics/
官方api文档 https://github.com/kubernetes/heapster/blob/master/docs/model.md 弃用了
弃用的api取值 https://blog.csdn.net/mofiu/article/details/77126848
获取heapster url
[root@tensorflow1 influxdb]kubectl cluster-info
Kubernetes master is running at https://192.168.1.138:6443
Heapster is running at https://192.168.1.138:6443/api/v1/namespaces/kube-system/services/heapster/proxy
KubeDNS is running at https://192.168.1.138:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
monitoring-grafana is running at https://192.168.1.138:6443/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
monitoring-influxdb is running at https://192.168.1.138:6443/api/v1/namespaces/kube-system/services/monitoring-influxdb/proxy
curl -u admin:admin "https://192.168.1.138:6443/api/v1/namespaces/kube-system/services/heapster/proxy/api/v1/model/namespaces/" -k
curl -u admin:admin "https://192.168.1.138:6443/api/v1/namespaces/kube-system/services/heapster/proxy/api/v1/model/namespaces/default/metrics" -k
[
"memory/request",
"memory/limit",
"cpu/usage_rate",
"memory/usage",
"cpu/request",
"cpu/limit"
]
[root@tensorflow1 influxdb]# curl -u admin:admin "https://192.168.1.138:6443/api/v1/namespaces/kube-system/services/heapster/proxy/api/v1/model/namespaces/default/metrics/memory/usage" -k
{
"metrics": [
...
{
"timestamp": "2018-04-09T07:45:00Z",
"value": 81121280
},
{
"timestamp": "2018-04-09T07:46:00Z",
"value": 81121280
}
...
],
"latestTimestamp": "2018-04-09T07:46:00Z"
}
本文转自CSDN-k8s api文档 调用heapster metrics

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
k8s namespace限制调研
1.创建namespace gpu 2.增加限制 [root@tensorflow1 gpu-namespace]# cat compute-resources.yaml apiVersion: v1 kind: ResourceQuota metadata: name: compute-resources namespace: gpu spec: hard: pods: "5" requests.cpu: "1" requests.memory: 1Gi limits.cpu: "2" limits.memory: 2Gi [root@tensorflow1 gpu-namespace]# kubectl describe namespace gpu Name: gpu Labels: <none> Annotations: <none> Status: Active Resource Quotas Name: compute-resources Resource Used Hard -------- --- --- limits.cpu 0 2 limits...
-
下一篇
k8s RBAC 多租户权限控制实现
访问到权限分两部分 1.Authenticating认证授权配置由kube-apiserver管理 这里使用的是 Static Password File方式。apiserver启动yaml里配置basic-auth-file即可,容器 启动apiserver的话要注意这个文件需要是在容器内能访问到的。(可以通过挂载文件,或者在已经挂载的路径里增加配置文件)basic-auth-file文件格式见官方文档https://kubernetes.io/docs/admin/authentication/#static-password-file注意password在第一个,之前没注意被卡了很久。修改了文件以后需要重启apiserver才能生效。这里kubectldelete删除pod有问题,使用docker命令查看apiserver容器其实没有重启。解决方案是使用dockerkill杀掉容器。自动重启。 [root@tensorflow1 ~]# curl -u admin:admin "https://localhost:6443/api/v1/pods" -k { "kind": "S...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2整合Redis,开启缓存,提高访问速度
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- MySQL8.0.19开启GTID主从同步CentOS8
- Dcoker安装(在线仓库),最新的服务器搭配容器使用
- Hadoop3单机部署,实现最简伪集群
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- CentOS8编译安装MySQL8.0.19
- CentOS6,CentOS7官方镜像安装Oracle11G
- CentOS7设置SWAP分区,小内存服务器的救世主