【干货】深度学习中的线性代数—简明教程
Linear Algebra for Deep Learning 深度学习(Deep Learning)是机器学习的一个子领域,涉及的算法模仿大脑的功能和结构,称为人工神经网络。 线性代数(linear algebra)是有关连续值的数学。许多计算机科学家在此方面经验不足(传统上计算机科学更偏重离散数学)。想要理解和使用许多机器学习算法,特别是深度学习算法,对线性代数的良好理解是不可或缺的。 为什么要学习数学? 线性代数、概率论和微积分是用来表达机器学习的“语言”。学习这些内容将有助于深入理解底层的算法机制,也有助于开发新的算法。 当被限制在足够小的尺度上,深度学习背后的一切都是数学。所以在开始深度学习之前,了解基本的线性代数是非常重要的。 深度学习背后的核心数据结构是标量(Scalar)、向量(Vector)、矩阵(Matrix)、张量(Tensor)。在编程中,让我们使用这些数据结构求解基本的线性代数问题。 标量(Scalars) 标量是一个数字,或者说,是一个0阶张量。符号表示是一个属于实数集的标量。 深度学习中有着不同的数字集合。表示正整数集。表示整数集,包括正整数,负整数和零...