微软解释机器学习如何改进 Windows 10 更新体验
微软在 2018年 4月Windows更新时第一次大规模使用机器学习(ML),ML 通过监测PC运行状况的六个核心领域(例如总体可靠性),以确定功能更新过程是否顺利进行。而在 2019 年 5 月发布的更新推送中,这是微软使用 ML 的第三次迭代,可评估的领域增加到了 35 个,微软计划在未来的更新中进一步扩大覆盖范围。 微软表示,使用 ML 来部署更新拥有更好的更新体验,例如下图,通过 ML 更新后系统启动的卸载数量不到一半、内核崩溃的数量减少一半,以及更新后的驱动程序问题的数量减少了五倍。 微软是如何设计和构建支持 Windows 10 更新的机器学习模型 最近,微软发布博文介绍了这一技术信息。微软使用的是一个经过动态训练的模型,它通过在最新更新的 PC机上训练,有区分好的和坏的更新体验的能力。下图是一个详尽的机器学习图,展示了机器学习算法的整体框架。 每个 Windows 10 更新版本都先推给早期使用者(比如 Windows 内部人员和主动寻求更新的人)。有了这些体验者,微软开发人员就可以通过诊断数据(例如内核模式崩溃、异常关闭和驱动程序问题)来监控他们的更新体验。 机器学习在...
