您现在的位置是:首页 > 文章详情

Spark实践-日志查询

日期:2016-04-28点击:608
  1. 环境
    win 7
    jdk 1.7.0_79 (Oracle Corporation)
    scala version 2.10.5
    spark 1.6.1
    详细配置:
    Spark Properties
spark.app.id local-1461891171126 spark.app.name JavaLogQuery spark.driver.host 10.170.26.123 spark.driver.port 34998 spark.executor.id driver spark.externalBlockStore.folderName spark-5242ec5b-3653-42e4-9ba2-da3ef515a1d5 spark.master local[1] spark.scheduler.mode FIFO
  1. 任务

完成对如下日志的查询:

 "10.10.10.10 - \"FRED\" [18/Jan/2013:17:56:07 +1100] \"GET http://images.com/2013/Generic.jpg " + "HTTP/1.1\" 304 315 \"http://referall.com/\" \"Mozilla/4.0 (compatible; MSIE 7.0; " + "Windows NT 5.1; GTB7.4; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; " + ".NET CLR 3.5.21022; .NET CLR 3.0.4506.2152; .NET CLR 1.0.3705; .NET CLR 1.1.4322; .NET CLR " + "3.5.30729; Release=ARP)\" \"UD-1\" - \"image/jpeg\" \"whatever\" 0.350 \"-\" - \"\" 265 923 934 \"\" " + "62.24.11.25 images.com 1358492167 - Whatup", "10.10.10.10 - \"FRED\" [18/Jan/2013:18:02:37 +1100] \"GET http://images.com/2013/Generic.jpg " + "HTTP/1.1\" 304 306 \"http:/referall.com\" \"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; " + "GTB7.4; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR " + "3.5.21022; .NET CLR 3.0.4506.2152; .NET CLR 1.0.3705; .NET CLR 1.1.4322; .NET CLR " + "3.5.30729; Release=ARP)\" \"UD-1\" - \"image/jpeg\" \"whatever\" 0.352 \"-\" - \"\" 256 977 988 \"\" " + "0 73.23.2.15 images.com 1358492557 - Whatup"

思路:
1.利用正则表达式提取出日志特征,然后map在分片后的RDD上。

JavaPairRDD<Tuple3<String, String, String>, Stats> extracted

2.执行reducebykey,merge相同的Stats

 package org.apache.spark.examples; import com.google.common.collect.Lists; import scala.Tuple2; import scala.Tuple3; import org.apache.commons.logging.impl.Log4JLogger; import org.apache.log4j.Level; import org.apache.log4j.Logger; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import java.io.Serializable; import java.util.Collections; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * 日志查询 * @author jinhang * */ public final class JavaLogQuery { //模拟日志 exampleApacheLogs public static final List<String> exampleApacheLogs = Lists.newArrayList( "10.10.10.10 - \"FRED\" [18/Jan/2013:17:56:07 +1100] \"GET http://images.com/2013/Generic.jpg " + "HTTP/1.1\" 304 315 \"http://referall.com/\" \"Mozilla/4.0 (compatible; MSIE 7.0; " + "Windows NT 5.1; GTB7.4; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; " + ".NET CLR 3.5.21022; .NET CLR 3.0.4506.2152; .NET CLR 1.0.3705; .NET CLR 1.1.4322; .NET CLR " + "3.5.30729; Release=ARP)\" \"UD-1\" - \"image/jpeg\" \"whatever\" 0.350 \"-\" - \"\" 265 923 934 \"\" " + "62.24.11.25 images.com 1358492167 - Whatup", "10.10.10.10 - \"FRED\" [18/Jan/2013:18:02:37 +1100] \"GET http://images.com/2013/Generic.jpg " + "HTTP/1.1\" 304 306 \"http:/referall.com\" \"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; " + "GTB7.4; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR " + "3.5.21022; .NET CLR 3.0.4506.2152; .NET CLR 1.0.3705; .NET CLR 1.1.4322; .NET CLR " + "3.5.30729; Release=ARP)\" \"UD-1\" - \"image/jpeg\" \"whatever\" 0.352 \"-\" - \"\" 256 977 988 \"\" " + "0 73.23.2.15 images.com 1358492557 - Whatup"); public static final Pattern apacheLogRegex = Pattern.compile( "^([\\d.]+) (\\S+) (\\S+) \\[([\\w\\d:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) ([\\d\\-]+) \"([^\"]+)\" \"([^\"]+)\".*"); public static class Stats implements Serializable { private final int count; private final int numBytes; public Stats(int count, int numBytes) { this.count = count; this.numBytes = numBytes; } public Stats merge(Stats other) { return new Stats(count + other.count, numBytes + other.numBytes); } public String toString() { return String.format("bytes=%s\tn=%s", numBytes, count); } } public static Tuple3<String, String, String> extractKey(String line) { Matcher m = apacheLogRegex.matcher(line); if (m.find()) { String ip = m.group(1); String user = m.group(3); String query = m.group(5); if (!user.equalsIgnoreCase("-")) { return new Tuple3<String, String, String>(ip, user, query); } } return new Tuple3<String, String, String>(null, null, null); } public static Stats extractStats(String line) { Matcher m = apacheLogRegex.matcher(line); if (m.find()) { int bytes = Integer.parseInt(m.group(7)); return new Stats(1, bytes); } else { return new Stats(1, 0); } } public static void main(String[] args) { Logger.getLogger(JavaLogQuery.class).setLevel(Level.FATAL); SparkConf sparkConf = new SparkConf().setAppName("JavaLogQuery").setMaster("local[1]"); JavaSparkContext jsc = new JavaSparkContext(sparkConf); JavaRDD<String> dataSet = (args.length == 1) ? jsc.textFile(args[0]) : jsc.parallelize(exampleApacheLogs); JavaPairRDD<Tuple3<String, String, String>, Stats> extracted = dataSet.mapToPair(new PairFunction<String, Tuple3<String, String, String>, Stats>() { @Override public Tuple2<Tuple3<String, String, String>, Stats> call(String s) { return new Tuple2<Tuple3<String, String, String>, Stats>(extractKey(s), extractStats(s)); } }); JavaPairRDD<Tuple3<String, String, String>, Stats> counts = extracted.reduceByKey(new Function2<Stats, Stats, Stats>() { @Override public Stats call(Stats stats, Stats stats2) { return stats.merge(stats2); } }); List<Tuple2<Tuple3<String, String, String>, Stats>> output = counts.collect(); //遍历结果 for (Tuple2<?,?> t : output) { System.out.println(t._1() + "\t" + t._2()); } jsc.stop(); } } 

这里写图片描述

分析下执行过程:

加载SLF4J

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/D:/JavaProject/spark-demo/lib/spark-assembly-1.6.1-hadoop2.0.0-mr1-cdh4.2.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/D:/JavaProject/spark-demo/lib/spark-examples-1.6.1-hadoop2.0.0-mr1-cdh4.2.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

初始化sparkcontext上下文

16/04/29 09:36:22 INFO SparkContext: Running Spark version 1.6.1 //-Djava.library.path=$HADOOP_HOME/lib/native/Linux-amd64-64/*.jar可以解决 16/04/29 09:36:23 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 16/04/29 09:36:23 INFO SecurityManager: Changing view acls to: hp 16/04/29 09:36:23 INFO SecurityManager: Changing modify acls to: hp 16/04/29 09:36:23 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hp); users with modify permissions: Set(hp) 16/04/29 09:36:23 INFO Utils: Successfully started service 'sparkDriver' on port 36010. 16/04/29 09:36:23 INFO Slf4jLogger: Slf4jLogger started 16/04/29 09:36:24 INFO Remoting: Starting remoting 16/04/29 09:36:24 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@10.170.26.123:36023] 16/04/29 09:36:24 INFO Utils: Successfully started service 'sparkDriverActorSystem' on port 36023. 16/04/29 09:36:24 INFO SparkEnv: Registering MapOutputTracker 16/04/29 09:36:24 INFO SparkEnv: Registering BlockManagerMaster 16/04/29 09:36:24 INFO DiskBlockManager: Created local directory at C:\Users\hp\AppData\Local\Temp\blockmgr-84667505-0018-439b-9627-a4360d872118 16/04/29 09:36:24 INFO MemoryStore: MemoryStore started with capacity 517.4 MB 16/04/29 09:36:24 INFO SparkEnv: Registering OutputCommitCoordinator 16/04/29 09:36:24 INFO Utils: Successfully started service 'SparkUI' on port 4040. 16/04/29 09:36:24 INFO SparkUI: Started SparkUI at http://10.170.26.123:4040 16/04/29 09:36:24 INFO Executor: Starting executor ID driver on host localhost 16/04/29 09:36:24 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 36030. 16/04/29 09:36:24 INFO NettyBlockTransferService: Server created on 36030 16/04/29 09:36:24 INFO BlockManagerMaster: Trying to register BlockManager 16/04/29 09:36:24 INFO BlockManagerMasterEndpoint: Registering block manager localhost:36030 with 517.4 MB RAM, BlockManagerId(driver, localhost, 36030) 16/04/29 09:36:24 INFO BlockManagerMaster: Registered BlockManager

这里写图片描述
SecurityManager
‘sparkDriver’ on port 36010
Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@10.170.26.123:36023]
MapOutputTracker
BlockManagerMaster
DiskBlockManager: Created local directory at C:\Users\hp\AppData\Local\Temp\blockmgr-84667505-0018-439b-9627-
OutputCommitCoordinator
Executor
org.apache.spark.network.netty.NettyBlockTransferService
这几个是几个主要过程。

开始执行job

16/04/29 10:12:31 INFO SparkContext: Starting job: collect at JavaLogQuery.java:112 16/04/29 10:12:31 INFO DAGScheduler: Registering RDD 1 (mapToPair at JavaLogQuery.java:98) 16/04/29 10:12:31 INFO DAGScheduler: Got job 0 (collect at JavaLogQuery.java:112) with 1 output partitions 16/04/29 10:12:31 INFO DAGScheduler: Final stage: ResultStage 1 (collect at JavaLogQuery.java:112) 16/04/29 10:12:31 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 0) 16/04/29 10:12:31 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 0) 16/04/29 10:12:31 INFO DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[1] at mapToPair at JavaLogQuery.java:98), which has no missing parents 16/04/29 10:12:31 WARN SizeEstimator: Failed to check whether UseCompressedOops is set; assuming yes 16/04/29 10:12:31 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 3.1 KB, free 3.1 KB) 16/04/29 10:12:31 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1897.0 B, free 5.0 KB) 16/04/29 10:12:31 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:36394 (size: 1897.0 B, free: 517.4 MB) 16/04/29 10:12:31 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006 16/04/29 10:12:31 INFO DAGScheduler: Submitting 1 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[1] at mapToPair at JavaLogQuery.java:98) 16/04/29 10:12:31 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks 16/04/29 10:12:31 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, partition 0,PROCESS_LOCAL, 3033 bytes) 16/04/29 10:12:31 INFO Executor: Running task 0.0 in stage 0.0 (TID 0) 16/04/29 10:12:32 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1158 bytes result sent to driver 16/04/29 10:12:32 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 320 ms on localhost (1/1) 16/04/29 10:12:32 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 16/04/29 10:12:32 INFO DAGScheduler: ShuffleMapStage 0 (mapToPair at JavaLogQuery.java:98) finished in 0.349 s 16/04/29 10:12:32 INFO DAGScheduler: looking for newly runnable stages 16/04/29 10:12:32 INFO DAGScheduler: running: Set() 16/04/29 10:12:32 INFO DAGScheduler: waiting: Set(ResultStage 1) 16/04/29 10:12:32 INFO DAGScheduler: failed: Set() 16/04/29 10:12:32 INFO DAGScheduler: Submitting ResultStage 1 ***(ShuffledRDD[2] at reduceByKey at JavaLogQuery.java:105), which has no missing parents*** 16/04/29 10:12:32 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 2.9 KB, free 7.9 KB) 16/04/29 10:12:32 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 1746.0 B, free 9.6 KB) 16/04/29 10:12:32 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:36394 (size: 1746.0 B, free: 517.4 MB) 16/04/29 10:12:32 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1006 16/04/29 10:12:32 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 1 (ShuffledRDD[2] at reduceByKey at JavaLogQuery.java:105) 16/04/29 10:12:32 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 tasks 16/04/29 10:12:32 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 1, localhost, partition 0,NODE_LOCAL, 1894 bytes) 16/04/29 10:12:32 INFO Executor: Running task 0.0 in stage 1.0 (TID 1) 16/04/29 10:12:32 INFO ShuffleBlockFetcherIterator: Getting 1 non-empty blocks out of 1 blocks 16/04/29 10:12:32 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 16 ms 16/04/29 10:12:32 INFO Executor: Finished task 0.0 in stage 1.0 (TID 1). 1449 bytes result sent to driver 16/04/29 10:12:32 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 1) in 107 ms on localhost (1/1) 16/04/29 10:12:32 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 16/04/29 10:12:32 INFO DAGScheduler: ResultStage 1 (collect at JavaLogQuery.java:112) finished in 0.108 s 16/04/29 10:12:32 INFO DAGScheduler: Job 0 finished: collect at JavaLogQuery.java:112, took 0.850227 s (10.10.10.10,"FRED",GET http://images.com/2013/Generic.jpg HTTP/1.1) bytes=621 n=2 16/04/29 10:12:56 INFO BlockManagerInfo: Removed broadcast_1_piece0 on localhost:36394 in memory (size: 1746.0 B, free: 517.4 MB) 

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

结束

16/04/29 10:12:56 INFO BlockManagerInfo: Removed broadcast_1_piece0 on localhost:36394 in memory (size: 1746.0 B, free: 517.4 MB) 16/04/29 10:16:13 INFO ContextCleaner: Cleaned accumulator 2 16/04/29 10:16:13 INFO BlockManagerInfo: Removed broadcast_0_piece0 on localhost:36394 in memory (size: 1897.0 B, free: 517.4 MB) 16/04/29 10:16:13 INFO ContextCleaner: Cleaned accumulator 1 16/04/29 10:24:29 WARN QueuedThreadPool: 5 threads could not be stopped 16/04/29 10:24:29 INFO SparkUI: Stopped Spark web UI at http://10.170.26.123:4040 16/04/29 10:24:29 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 16/04/29 10:24:29 INFO MemoryStore: MemoryStore cleared 16/04/29 10:24:29 INFO BlockManager: BlockManager stopped 16/04/29 10:24:29 INFO BlockManagerMaster: BlockManagerMaster stopped 16/04/29 10:24:30 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 16/04/29 10:24:30 INFO SparkContext: Successfully stopped SparkContext 16/04/29 10:24:30 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon. 16/04/29 10:24:30 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports. 16/04/29 10:24:30 INFO RemoteActorRefProvider$RemotingTerminator: Remoting shut down.
  1. 总结
    java的代码实现spark API虽然代码冗余很多,但是很清楚显示了spark的执行过程,先比于scala的代码,较为清楚,而且java的代码和其他的项目结合效果可能好些。
原文链接:https://yq.aliyun.com/articles/232691
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章