手把手教你用Python进行回归(附代码、学习资料)
我刚开始学习数据科学时,第一个接触到的算法就是线性回归。在把这个方法算法应用在到各种各样的数据集的过程中,我总结出了一些它的优点和不足。
首先,线性回归假设自变量和因变量之间存在线性关系,但实际情况却很少是这样。为了改进这个问题模型,我尝试了多项式回归,效果确实好一些(大多数情况下都是如此会改善)。但又有一个新问题:当数据集的变量太多的时候,用多项式回归很容易产生过拟合。
由于而且我建立的模型总是过于灵活,它可能在测试集上结果很好,但在那些“看不见的”数据上表现的就差强人意了。后来我看到另外一种称为样条回归的非线性方法---它将线性/多项式函数进行组合,用最终的结果来拟合数据。
在这篇文章中,我将会介绍线性回归、多项式回归的基本概念,然后详细说明关于样条回归的更多细节以及它的Python实现。
注:为了更好的理解本文中所提到的各种概念,你