利用Python实现卷积神经网络的可视化(附Python代码)
对于深度学习这种端到端模型来说,如何说明和理解其中的训练过程是大多数研究者关注热点之一,这个问题对于那种高风险行业显得尤为重视,比如医疗、军事等。在深度学习中,这个问题被称作“黑匣子(Black Box)”。如果不能解释模型的工作过程,我们怎么能够就轻易相信模型的输出结果呢?
以深度学习模型检测癌症肿瘤为例,该模型告诉你它能够检测出癌症的准确率高达99%,但它并没有告诉你它是如何工作并给出判断结果的。那么该模型是在核磁共振扫描片子中发现了重要线索吗?或者仅仅是将扫描结果上的污点错误地认为是肿瘤呢?模型的输出结果关系到病人的生死问题及治疗方案,医生是不能承担起这种错误的。
在本文中,将探讨如何可视化卷积神经网络(CNN),该网络在计算机视觉中使用最为广泛。首先了解CNN模型可视化的重要性,其次介绍可视化的几种方法,同时以一个用例帮助读者
