《构建实时机器学习系统》一1.5 实时机器学习的分类
1.5 实时机器学习的分类
按照实际应用中采用的方式不同,实时机器学习可以分为硬实时、软实时和批实时三种模式,下面将分别进行介绍。
1.5.1 硬实时机器学习
硬实时的定义是:响应系统在接收到请求之后,能够马上对请求进行响应反馈,做出处理。硬实时机器学习的主要应用场景是网页浏览、在线游戏、高频交易等对时效性要求非常高的领域。在这些领域中,我们往往需要将相应延迟控制在若干毫秒以下。对于高频交易等场景,更是有不少计算机软件、硬件专家,开发出了各种专有模块以在更短的时间内完成交易,获得超额利润。
在本书写作之时,计算机网络的传输速度仍然是响应延迟的一大主要因素。硬实时机器学习的响应架构往往会试图尽量减少请求处理过程中的网络传输步骤。与此同时,为了达到硬实时的要求,在请求突然增加的时候,往往会采取负载均衡的方法,靠增加服务器的数量来减少响应延迟。