如何利用深度学习诊断心脏病
人类心脏是一台令人惊叹的机器,它能持续运转长达一个世纪而不失灵。测量心脏功能的关键方法之一是计算其射血分数,即每搏输出量占心室舒张末期容积量的百分比。而测量这个指标的第一步依赖于对心脏图像心室的分割。
当我在纽约从事Insight AI计划时,我决定着手处理右心室分割问题。下面我将简单介绍一下整个过程。
问题描述
开发一个能够对心脏磁共振成像(MRI)数据集图像中的右心室自动分割的系统。到目前为止,这主要是通过经典的图像处理方法来处理的。而现代深度学习技术有可能提供更可靠、更自动化的解决方案。
2016年由Kaggle赞助的左心室分割挑战赛中的三名获奖者都采用了深度学习解决方案。然而,分割右心室(RV)则更具挑战性,因为:
在腔内存在信号强度类似于心肌的小梁; RV复杂的新月形;分割根尖图像切片的难度;个体之间的室内形状和强度存在相当大的差
