RAG 文档解析工具选型指南
编者按: 当你需要为 RAG 系统选择文档解析工具时,面对 GitHub 上数百个开源项目和各种商业解决方案,你是否感到无从下手? 本文基于作者在实际项目中的工具使用经验,系统梳理了处理不同类型文档的工具选择。从知识图谱处理的 GRAG、KG-RAG、GNN-RAG 等工具,到表格解析的 TableRAG、TA。从 HTML 处理的 BeautifulSoup、HtmlRAG,到 PDF 解析的 MinerU、GPTPDF、Marker,再到多模态处理的 CLIP、Wav2Vec 2.0 等。期待本文能够帮助你快速找到最适合自己项目需求的技术方案。 作者 | Florian June 编译 | 岳扬 对于 RAG 系统而言,从文档中提取信息是一个不可避免的情况。最终系统输出的质量很大程度上取决于从源内容中提取信息的效果。 过去,我曾从不同角度探讨过文档解析问题[1]。本文结合近期一篇 RAG 调查报告[2]的发现与我之前的部分研究,对 RAG 系统如何解析和整合结构化、半结构化、非结构化和多模态知识进行了简明概括。 Figure 1: RAG 系统整合的多种知识类型,涵盖结构化、半结构...





