分布式场景怎么Join | 京东云技术团队
背景
最近在阅读查询优化器的论文,发现System R中对于Join操作的定义一般分为了两种,即嵌套循环、排序-合并联接。在原文中,更倾向使用排序-合并联接逻辑。
考虑到我的领域是在处理分库分表或者其他的分区模式,这让我开始不由得联想我们怎么在分布式场景应用这个Join逻辑,对于两个不同库里面的不同表我们是没有办法直接进行Join操作的。查阅资料后发现原来早有定义,即分布式联接算法。
分布式联接算法
跨界点处理数据即分布式联接算法,常见的有四种模型:Shuffle Join(洗牌联接)、Broadcast Join(广播联接)、MapReduce Join(MapReduce联接)、Sort-Merge Join(排序-合并联接)。
接下来将进行逐一了解与分析,以便后续开发的应用。
Shuffle Join(洗牌联接)
先上原理解释:
Shuffle Join的核心思想是将来自不同节点的数据重新分发(洗牌),使得可以联接的数据行最终位于同一个节点上。 通常,对于要联接的两个表,会对联接键应用相同的哈希函数,哈希函数的结果决定了数据行应该被发送到哪个节点。这样,所有具有相同哈希值的行都会被送到同一个节点,然后在该节点上执行联接操作。
可能解释完还是有点模糊,举个例子,有两张表,分别以id字段进行分库操作,且哈希算法相同(为了简单,这里只介绍分库场景,分库分表同理。算法有很多种,这里举例是hash算法),那么这两张表的分片或许可以在同一个物理库中,这样我们不需要做大表维度的处理,我们可以直接下推Join操作到对应的物理库操作即可。
在ShardingSphere中,这种场景类似于绑定表的定义,如果两张表的算法相同,可以直接配置绑定表的关系,进行相同算法的连接查询,避免复杂的笛卡尔积。
这样做的好处是可以尽量下推到数据库操作,在中间件层面我们可以做并行处理,适合大规模的数据操作。
但是,这很理想,有多少表会采用相同算法处理呢。
Broadcast Join(广播联接)
先上原理解释:
当一个表的大小相对较小时,可以将这个小表的全部数据广播到所有包含另一个表数据的节点上。 每个节点上都有小表的完整副本,因此可以独立地与本地的大表数据进行联接操作,而不需要跨节点通信。
举个例子,有一张非常小的表A,还有一张按照ID分片的表B,我们可以在每一个物理库中复制一份表A,这样我们的Join操作就可以直接下推到每一个数据库操作了。
这种情况比Shuffle Join甚至还有性能高效,这种类似于ShardingSphere中的广播表的定义,其存在类似于字典表,在每一个数据库都同时存在一份,每次写入会同步到多个节点。
这种操作的好处显而易见,不仅支持并行操作而且性能极佳。
但是缺点也显而易见,如果小表不够小数据冗余不说,广播可能会消耗大量的网络带宽和资源。
MapReduce Join(MapReduce联接)
先上原理解释:
MapReduce是一种编程模型,用于处理和生成大数据集,其中的联接操作可以分为两个阶段:Map阶段和Reduce阶段。 Map阶段:每个节点读取其数据分片,并对需要联接的键值对应用一个映射函数,生成中间键值对。 Reduce阶段: 中间键值对会根据键进行排序(在某些实现中排序发生在Shuffle阶段)和分组,然后发送到Reduce节点。 在Reduce节点上,具有相同键的所有值都会聚集在一起,这时就可以执行联接操作。
MapReduce Join不直接应用于传统数据库逻辑,而是适用于Hadoop这样的分布式处理系统中。但是为了方便理解,还是用SQL语言来分析,例如一条SQL:
SELECT orders.order_id, orders.date, customers.name FROM orders JOIN customers ON orders.customer_id = customers.customer_id;
会被转换为两个SQL:
SELECT customer_id, order_id, date FROM orders; SELECT customer_id, name FROM customers;
这个过程就是Map阶段,即读取orders
和customers
表的数据,并为每条记录输出键值对,键是customer_id
,值是记录的其余部分。
下一个阶段可有可无,即Shuffle阶段。如果不在这里排序可能会在Map阶段执行SQL时候排序/分组或者在接下来的Reduce阶段进行额外排序/分组。在这个阶段主要将收集到的数据按照customer_id排序分组,以确保相同的customer_id的数据达到Reduce阶段。
Reduce阶段将每个对应的customer_id进行联接操作,输出并返回最后的结果。
这种操作普遍应用于两个算法完全不相同的表单,也是一种标准的处理模型,在这个过程中,我们以一张逻辑表的维度进行操作。这种算法可能会消耗大量内存,甚至导致内存溢出,并且在处理大数据量时会相当耗时,因此不适合需要低延迟的场景。
额外补充
内存溢出场景普遍在如下场景:
我能想到的相应解决方案:
Sort-Merge Join(排序-合并联接)
先上原理解释:
在分布式环境中,Sort-Merge Join首先在每个节点上对数据进行局部排序,然后将排序后的数据合并起来,最后在合并的数据上执行联接操作。 这通常涉及到多阶段处理,包括局部排序、数据洗牌(重新分发),以及最终的排序和合并。
举个理解,还是上面的SQL。
SELECT orders.order_id, orders.date, customers.name FROM orders JOIN customers ON orders.customer_id = customers.customer_id;
orders
表按customer_id
进行排序。 customers
表按customer_id
进行排序。 customer_id
的行配对。 这个就有点类似于原生的排序-合并联接了。也是数据库场景的标准处理办法。
对于已经排序的数据集或数据分布均匀的情况,这种方法非常有效。如果数据未预先排序,这种方法可能会非常慢,因为它要求数据在联接之前进行排序。
当然,这个算法也会造成内存溢出的场景,解决方案如下:
作者:京东科技 张俊杰
来源:京东云开发者社区 转载请注明来源

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
营销系统黑名单优化:位图的应用解析 | 京东云技术团队
背景 营销系统中,客户投诉是业务发展的一大阻碍,一般会过滤掉黑名单高风险账号,并配合频控策略,来减少客诉,进而增加营销效率,减少营销成本,提升营销质量。 营销系统一般是通过大数据分析建模,在CDP(客户数据平台,以客户为核心,围绕数据融合、人群圈选、用户洞察等提供产品能力)创建营销目标客户群体,黑名单同样也是通过CDP维护。下面的图片简单描述了过滤黑名单的处理流程,流程是相对简单的。但是,测试过程中却发现一个问题,对于一个近30万的营销群体,整个触达流程需要处理一个多小时,而其中过滤黑名单就占用了近半个小时的时间,业务有点难以接受这个性能。 性能优化 引入多线程优化 其实很容易就能想到,对于调用RPC接口这种含有I/O操作的场景,可以引入多线程优化,将一个几十万的账号集合拆分为多个子任务提交给线程池处理,从而加快处理速度。从下图可以看出引入多线程后性能有很明显的改善,单线程处理25万、50万个账号的群体分别需要近半小时、近一小时,改为25个线程处理后可以分别控制在1分钟、2分钟左右。 引入位图优化 进一步了解CDP的底层原理后,会发现这个问题应该还有其他的解决方案,即通过位图优化。CD...
- 下一篇
NGINX Agent 的可观测性和远程配置
原文作者:Prabhat Dixit of F5 原文链接:NGINX Agent 的可观测性和远程配置 转载来源:NGINX 开源社区 NGINX 唯一中文官方社区 ,尽在nginx.org.cn 在 NGINX Sprint 2022 大会上,我们承诺实现 NGINX 开源版项目管理和社区互动方式的现代化。为此,我们宣布后续将推出 NGINX Agent — 该守护进程会作为伴侣软件来管理各个 NGINX 部署,提供可观测性和配置 API。今天,我们非常自豪能够在 Apache 2 许可下推出 NGINX Agent,成功兑现了这一承诺。 F5 NGINX 致力于构建一个涵盖应用部署和管理方方面面的生态系统。NGINX Agent 通过为开发和平台运维团队提供细粒度控制以及用于配置、监控和管理 NGINX 实例的附加功能,在这一愿景中扮演了重要角色。 NGINX Agent 有何作用? NGINX Agent 是一个轻量级守护进程,可与您的 NGINX 开源版或 NGINX Plus 实例一同部署。值得注意的是,NGINX Agent 具备一些 NGINX 开源版没有的功能: NG...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- CentOS8编译安装MySQL8.0.19
- SpringBoot2初体验,简单认识spring boot2并且搭建基础工程
- Linux系统CentOS6、CentOS7手动修改IP地址
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7安装Docker,走上虚拟化容器引擎之路
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- CentOS7,CentOS8安装Elasticsearch6.8.6
- CentOS8安装Docker,最新的服务器搭配容器使用