神经网络是如何工作的? | 京东云技术团队
作为一名程序员,我们习惯于去了解所使用工具、中间件的底层原理,本文则旨在帮助大家了解AI模型的底层机制,让大家在学习或应用各种大模型时更加得心应手,更加适合没有AI基础的小伙伴们。
一、GPT与神经网络的关系
GPT想必大家已经耳熟能详,当我们与它进行对话时,通常只需关注自己问出的问题(输入)以及GPT给出的答案(输出),对于输出内容是如何产生的,我们一无所知,它就像一个神秘的黑盒子。
GPT是一种基于神经网络的自然语言处理(NLP)模型,使用大量数据输入神经网络对模型进行训练,直到模型的输出在一定程度上符合我们的预期,训练成熟的模型就可以接收用户的输入,并针对输入中的关键信息给出经过“思考”后的答案。想要弄明白GPT究竟是如何“思考”的,或许我们可以从神经网络出发。
二、什么是神经网络
那么,神经网络到底是什么呢?或者说,为什么是神经网络?
高中的生物学告诉我们,人类的神经系统由数以亿计的神经元连接而成,它们是生物学上的细胞,有细胞体、树突、轴突等主要结构,不同神经元之间的树突与轴突通过突触与其他神经元相互连接,形成复杂的人脑神经网络。
人工智能为了使机器获得接近人类的智力,尝试效仿人脑的思考过程,创造出了一种模仿人脑神经元之间相互连接的计算模型——神经网络。它由多层神经元组成,每个神经元接收输入并产生相应的输出。根据上述定义,图1中黑盒子的内部结构已初具轮廓,下图中的每个圆圈都代表一个神经元,神经元具有计算能力,可以将计算出来的结果传递到下一个神经元。
在生物学中,大脑的结构越简单,智力也就越低;相应地,神经系统越复杂,能处理的问题越多,智力也就越高。人工神经网络也是如此,越复杂的网络结构计算能力越强大,这也是为什么发展出了深度神经网络。之所以被称为"深度",是因为它具有多个隐藏层(即上图中纵向神经元的层数),相对于传统的浅层神经网络,深度神经网络具有更多的层级结构。
训练深度神经网络的过程就叫做深度学习。构建好深度神经网络之后,我们只需要将训练数据输入到神经网络中,它就会自发地学习数据中的特征。比如说我们想要训练一个深度神经网络来识别猫,只需要将大量不同种类、不同姿势、不同外观的猫的图片输入到神经网络中让它学习。训练成功后,我们将一张任意的图片输入到神经网络中,它会告诉我们里面是否有猫。
三、神经网络是如何计算的
现在,我们已经知道了什么是神经网络以及它的基本结构,那么神经网络中的神经元是如何对输入数据进行计算的呢?
在此之前,我们要解决一个问题:数据是如何输入到神经网络中的?下面以图像和文本类型的数据为例讲解。
数据是如何输入到神经网络中的
1、图像输入处理
想象一个画面:当我们把一张图片放大到一定程度时,可以看到一格一格的小方块。这个小方块就称为像素点,一张图片的像素点越多,说明像素越高,图片越清晰。每个像素点仅由一种颜色构成,光学中的三原色包含红色、绿色、蓝色,通过不同程度地混合这三种颜色可以产生出所有其他颜色。在RGB模型中,每种颜色的强度可以用一个数值来表示,通常在0到255之间。红色的强度值为0表示没有红色光,255表示最大强度的红色光;绿色和蓝色的强度值也是类似的。
为了存储一张图像,计算机要存储三个独立的矩阵,这三个矩阵分别与图像的红色、绿色和蓝色的强度相对应。如果图像的大小是256 * 256 个像素,那么在计算机中使用三个256 * 256 的矩阵(二维数组)就能表示这张图像。可以想象将三个矩阵表示的颜色重叠堆放在一起,便可显现出图像的原始样貌。
现在我们得到了图像在计算机中的表示方式,那么如何将它输入到神经网络呢?
通常我们会把上述三个矩阵转化为一个向量,向量可以理解成1 * n(行向量)或n * 1(列向量)的数组。那么这个向量的总维数就是256 * 256 * 3,结果是196608。在人工智能领域中,每一个输入到神经网络的数据都被叫做一个特征,那么上面的这张图像中就有196608个特征。这个196608维的向量也被叫做特征向量。神经网络接收这个特征向量作为输入,并进行预测,然后给出相应的结果。
2、文本输入处理
文本是由一系列字符组成的,首先需要将文本划分成有意义的单词,这个过程称为分词。在分词后,构建一个由出现的所有单词或部分高频单词组成的词汇表(也可以使用已有的词汇表)。词汇表中的每个单词都会被分配一个唯一索引,这样可以将文本转换为离散的符号序列,方便神经网络进行处理。在输入神经网络之前,通常会将文本的符号序列转换为密集的向量表示。
以文本“How does neural network works? ”为例:
- 分词:["how", "does", "neural", "network", "works"]
- 构建词汇表:{"how": 0, "does": 1, "neural": 2, "network": 3, "works": 4}
- 序列化文本数据:["how", "does", "neural", "network", "works"] -->[0, 1, 2, 3, 4]
- 向量化:
#此处以one-hot向量表示法为例: [[1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 0, 0, 1]]
最后,将向量序列作为输入,给神经网络进行训练或预测。
至此我们已经知道了数据以怎样的形式输入到神经网络中,那么神经网络是如何根据这些数据进行训练的呢?
神经网络是如何进行预测的
首先明确模型训练和预测的区别:训练是指通过使用已知的数据集来调整模型的参数,使其能够学习到输入和输出之间的关系;预测是指使用训练好的模型来对新的输入数据进行预测。
神经网络的预测其实是基于一个很简单的线性变换公式:
其中,x表示特征向量,w是特征向量的权重,表示每个输入特征的重要程度,b表示阈值,用于影响预测结果。公式中的dot()函数表示将w和x进行向量相乘。举例:如果一个输入数据有i个特征,代入公式计算结果为:
如何理解这个公式呢?假设你需要决策周末是否去公园划船,你对此犹豫不决,需要神经网络帮你做决定。决定是否去划船有三个因素:天气是否晴朗温暖、地点是否远近适中、同行玩伴是否合心意。实际情况是出行那天天气为阴且偶有阵风、地点在20km外的偏远郊区、同行玩伴是心仪已久的大帅哥。这三个因素即为输入数据的特征向量x=[x1, x2, x3],我们需要根据特征对结果的影响来设置特征值,如“天气不好”和“地点偏远”对结果具有负向的影响,我们可以把它设为-1,“同行玩伴是心仪已久的大帅哥”显然对结果有大大的正向影响,可以把它设为1,即特征向量x=[-1, -1, 1]。接下来,需要根据你的偏好来设置三个特征的权重,也就是每个因素对你最终决策的影响程度。如果你不在乎天气和地点,只要与大帅哥同行便风雨无阻,那么可以将权重设置为w=[1, 1, 5];如果你是个懒狗,那你可能会设置权重为w=[2, 6, 3];总之,权重是根据对应特征的重要程度来确定的。
我们选择第一组权重w=[1, 1, 5],特征向量为x=[-1, -1, 1], 并设置阈值b=1,假设结果z ≥ 0表示去,z < 0表示不去,计算预测结果z = (x1*w1 + x2*w2 + x3*w3) + b = 4 > 0,因此神经网络给出的预测结果是:去公园划船。
上面使用的公式
本质上是一种逻辑回归,用于将输入数据映射到二分类的概率输出。逻辑回归通常使用一个特定的激活函数来实现将z值到[0, 1]的映射关系,即 Sigmoid函数,它将线性变换的结果通过非线性映射转化为概率值。通常,大于等于0.5的概率值被视为正类,小于0.5的概率值被视为负类。
Sigmoid函数的公式和图像如下所示:
除了能将结果输出范围控制在0到1之间,Sigmoid函数(或其他激活函数)另外一个重要作用就是将线性变换的结果进行非线性映射,使神经网络可以学习和表示更加复杂的非线性关系。如果没有激活函数,神经网络只能解决简单的线性问题;加入激活函数之后,只要层数足够多,神经网络就能解决所有问题,因此激活函数是必不可少的。
神经网络是如何进行学习的
得到预测结果后,神经网络会通过损失函数判断预测结果是否准确,如果不够准确,神经网络会进行自我调整,这就是学习的过程。
损失函数用于衡量模型的预测结果与真实标签之间的误差。通过将预测值与真实值进行比较,损失函数提供了一个数值指标,反映了模型当前的预测性能。较小的损失值表示模型的预测结果与真实标签更接近,而较大的损失值表示预测误差较大。下面介绍一个常用于二分类问题的损失函数(对数损失):
神经网络学习的目的,就是通过调整模型的参数使损失函数达到最小值,从而改善模型的预测性能,这个过程也称为模型的训练。梯度下降算法可以解决这一问题,通过该算法找到合适的w(特征的权重)和b(阈值),梯度下降算法会一步一步地改变w和b的值,使损失函数的结果越来越小,也就是使预测结果更精准。
这里需要注意的是,如果学习率设置过小,则需要多次梯度下降才能到达最低点,浪费机器运行资源;如果设置过大,则可能错过最低点直接到了图中左侧的点位,因此需要根据实际情况选择一个正确的学习率。
神经网络的计算过程主要有两个步骤:正向传播和反向传播。正向传播用于计算神经元的输出,也就是上述对输入特征进行加权求和、并通过激活函数进行非线性变换的过程;反向传播用于更新优化模型参数,通过计算损失函数关于模型参数的梯度,从输出层向输入层反向传播梯度的过程(反向传播涉及大量的数学计算,感兴趣的读者可以深入了解)。
四、综述
综上所述,神经网络训练和学习的过程其实就是对模型参数进行不断调优、减少预测损失值过程。经过充分训练后,模型能够从输入数据中学习到有效的特征表示和权重分配,从而能够对未见过的数据进行准确的预测。训练完成的神经网络模型可以应用于各种实际问题。比如,在图像分类任务中,卷积神经网络可以根据输入图像的特征自动识别物体或图案;在自然语言处理任务中,循环神经网络可以理解和生成文本;在推荐系统中,多层感知机神经网络可以根据用户的历史行为进行个性化推荐。
这篇文章对神经网络的工作机制做了浅层次的讲解,如有不正之处,敬请指教!
五、引用
https://cloud.tencent.com/developer/article/1384762
http://zhangtielei.com/posts/blog-nn-visualization.html
https://blog.csdn.net/pingchangxin_6/article/details/79754384
ps:部分专业名词释义来自GPT-3.5-turbo
作者:京东零售 欧阳舟俞
来源:京东云开发者社区 转载请注明来源

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
小小的日志,大大的坑 | 京东云技术团队
1. 背景 压测过程中优化线程池以后单机qps存在性能瓶颈,优化过程中发现默认线程池及日志对性能存在严重的影响所以引发了一系列对日志优化的整理 2.哪些场景可能导致性能问题 在任何系统中,日志都是非常重要的组成部分,它是反映系统运行情况的重要依据,也是排查问题时的必要线索。绝大多数人都认可日志的重要性,但是又有哪些场景可能导致性能问题?今天就让我们来聊聊Java日志性能那些事。 2.1 不合理的书写方法 如上3种写法,我相信大家或多或少都在项目代码中看到过,那么他们之前有区别呢,会对性能造成什么影响? 如果此时关闭 DEBUG 日志级别,差异就出现了 格式1 依然还是要执行字符串拼接,即使它不输出日志,属于浪费。 格式2 的缺点就是参数会提前做JSON序列化也产生性能损耗。 所以推荐格式3,新增日志开关,只有在执行时才会动态的拼接,关闭相应日志级别后,不会有性能损耗。 2.2 不合理的日志 尽量多的日志,能够把用户的请求串起来,更容易断定出问题的代码位置。由于当前分布式系统,且业务庞杂,任何日志的缺失对于程序员定位问题都是极大的障碍。所以要合理的打印日志,设置合理的日志级别 ...
- 下一篇
PWA 离线方案研究报告 | 京东云技术团队
本文并不是介绍如何将一个网页配置成离线应用并支持安装下载的。研究PWA的目的仅仅是为了保证用户的资源可以直接从本地加载,来忽略全国或者全球网络质量对页面加载速度造成影响。当然,如果页面上所需的资源,除了资源文件外并不需要任何的网络请求,那它除了不支持安装到桌面,已经算是一个离线应用了。 什么是PWA PWA(Progressive Web App)是一种结合了网页和原生应用程序功能的新型应用程序开发方法。PWA 通过使用现代 Web 技术,例如 Service Worker 和 Web App Manifest,为用户提供了类似原生应用的体验。 从用户角度来看,PWA 具有以下特点: 1. 可离线访问:PWA 可以在离线状态下加载和使用,使用户能够在没有网络连接的情况下继续浏览应用; 2. 可安装:用户可以将 PWA 添加到主屏幕,就像安装原生应用一样,方便快捷地访问; 3. 推送通知:PWA 支持推送通知功能,可以向用户发送实时更新和提醒; 4. 响应式布局:PWA 可以适应不同设备和屏幕大小,提供一致的用户体验。 从开发者角度来看,PWA 具有以下优势: 1. 跨平台开发:PWA ...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Red5直播服务器,属于Java语言的直播服务器
- CentOS7,8上快速安装Gitea,搭建Git服务器
- CentOS6,7,8上安装Nginx,支持https2.0的开启
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- SpringBoot2更换Tomcat为Jetty,小型站点的福音
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- SpringBoot2全家桶,快速入门学习开发网站教程
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- CentOS8编译安装MySQL8.0.19