Flink测试利器之DataGen初探 | 京东云技术团队
什么是 Flinksql
Flink SQL 是基于 Apache Calcite 的 SQL 解析器和优化器构建的,支持ANSI SQL 标准,允许使用标准的 SQL 语句来处理流式和批处理数据。通过 Flink SQL,可以以声明式的方式描述数据处理逻辑,而无需编写显式的代码。使用 Flink SQL,可以执行各种数据操作,如过滤、聚合、连接和转换等。它还提供了窗口操作、时间处理和复杂事件处理等功能,以满足流式数据处理的需求。
Flink SQL 提供了许多扩展功能和语法,以适应 Flink 的流式和批处理引擎的特性。他是Flink最高级别的抽象,可以与 DataStream API 和 DataSet API 无缝集成,利用 Flink 的分布式计算能力和容错机制。
使用 Flink SQL处理数据的基本步骤:
-
定义输入表:使用 CREATE TABLE 语句定义输入表,指定表的模式(字段和类型)和数据源(如 Kafka、文件等)。
-
执行 SQL 查询:使用 SELECT、INSERT INTO 等 SQL 语句来执行数据查询和操作。您可以在 SQL 查询中使用各种内置函数、聚合操作、窗口操作和时间属性等。
-
定义输出表:使用 CREATE TABLE 语句定义输出表,指定表的模式和目标数据存储(如 Kafka、文件等)。
-
提交作业:将 Flink SQL 查询作为 Flink 作业提交到 Flink 集群中执行。Flink会根据查询的逻辑和配置自动构建执行计划,并将数据处理任务分发到集群中的任务管理器进行执行。
总而言之,我们可以通过Flink SQL 查询和操作来处理流式和批处理数据。它提供了一种简化和加速数据处理开发的方式,尤其适用于熟悉 SQL 的开发人员和数据工程师。
什么是 connector
Flink Connector 是指用于连接外部系统和数据源的组件。它允许 Flink 通过特定的连接器与不同的数据源进行交互,例如数据库、消息队列、文件系统等。它负责处理与外部系统的通信、数据格式转换、数据读取和写入等任务。无论是作为输入数据表还是输出数据表,通过使用适当的连接器,可以在 Flink SQL 中访问和操作外部系统中的数据。目前实时平台提供了很多常用的连接器:
例如:
-
JDBC :用于与关系型数据库(如 MySQL、PostgreSQL)建立连接,并支持在 Flink SQL 中读取和写入数据库表的数据。
-
JDQ :用于与 JDQ 集成,可以读取和写入 JDQ 主题中的数据。
-
Elasticsearch :用于与 Elasticsearch 集成,可以将数据写入 Elasticsearch 索引或从索引中读取数据。
-
File Connector:用于读取和写入各种文件格式(如 CSV、JSON、Parquet)的数据。
-
......
还有如HBase、JMQ4、Doris、Clickhouse,Jimdb,Hive等,用于与不同的数据源进行集成。通过使用 Flink SQL Connector,我们可以轻松地与外部系统进行数据交互,将数据导入到 Flink 进行处理,或将处理结果导出到外部系统。
DataGen Connector
DataGen 是 Flink SQL 提供的一个内置连接器,用于生成模拟的测试数据,以便在开发和测试过程中使用。
使用 DataGen,可以生成具有不同数据类型和分布的数据,例如整数、字符串、日期等。这样可以模拟真实的数据场景,并帮助验证和调试 Flink SQL 查询和操作。
demo
以下是一个使用 DataGen 函数的简单示例:
-- 创建输入表 CREATE TABLE input_table ( order_number BIGINT, price DECIMAL(32,2), buyer ROW<first_name STRING, last_name STRING>, order_time TIMESTAMP(3) ) WITH ( 'connector' = 'datagen', );
在上面的示例中,我们使用 DataGen 连接器创建了一个名为 `input_table` 的输入表。该表包含了 `order_number`、`price` 和 `buyer` ,`order_time`四个字段。默认是random随机生成对应类型的数据,生产速率是10000条/秒,只要任务不停,就会源源不断的生产数据。当然也可以指定一些参数来定义生成数据的规则,例如每秒生成的行数、字段的数据类型和分布。
生成的数据样例:
{"order_number":-6353089831284155505,"price":253422671148527900374700392448,"buyer":{"first_name":"6e4df4455bed12c8ad74f03471e5d8e3141d7977bcc5bef88a57102dac71ac9a9dbef00f406ce9bddaf3741f37330e5fb9d2","last_name":"d7d8a39e063fbd2beac91c791dc1024e2b1f0857b85990fbb5c4eac32445951aad0a2bcffd3a29b2a08b057a0b31aa689ed7"},"order_time":"2023-09-21 06:22:29.618"} {"order_number":1102733628546646982,"price":628524591222898424803263250432,"buyer":{"first_name":"4738f237436b70c80e504b95f0d9ec3d7c01c8745edf21495f17bb4d7044b4950943014f26b5d7fdaed10db37a632849b96c","last_name":"7f9dbdbed581b687989665b97c09dec1a617c830c048446bf31c746898e1bccfe21a5969ee174a1d69845be7163b5e375a09"},"order_time":"2023-09-21 06:23:01.69"}
支持的类型
字段类型 | 数据生成方式 |
---|---|
BOOLEAN | random |
CHAR | random / sequence |
VARCHAR | random / sequence |
STRING | random / sequence |
DECIMAL | random / sequence |
TINYINT | random / sequence |
SMALLINT | random / sequence |
INT | random / sequence |
BIGINT | random / sequence |
FLOAT | random / sequence |
DOUBLE | random / sequence |
DATE | random |
TIME | random |
TIMESTAMP | random |
TIMESTAMP_LTZ | random |
INTERVAL YEAR TO MONTH | random |
INTERVAL DAY TO MONTH | random |
ROW | random |
ARRAY | random |
MAP | random |
MULTISET | random |
连接器属性
属性 | 是否必填 | 默认值 | 类型 | 描述 |
---|---|---|---|---|
connector | required | (none) | String | 'datagen'. |
rows-per-second | optional | 10000 | Long | 数据生产速率 |
number-of-rows | optional | (none) | Long | 指定生产的数据条数,默认是不限制。 |
fields.#.kind | optional | random | String | 指定字段的生产数据的方式 random还是sequence |
fields.#.min | optional | (Minimum value of type) | (Type of field) | random生成器 指定字段 # 最小值, 支持数字类型 |
fields.#.max | optional | (Maximum value of type) | (Type of field) | random生成器的指定字段 # 最大值, 支持数字类型 |
fields.#.length | optional | 100 | Integer | char/varchar/string/array/map/multiset 类型的长度. |
fields.#.start | optional | (none) | (Type of field) | sequence生成器的开始值 |
fields.#.end | optional | (none) | (Type of field) | sequence生成器的结束值 |
DataGen使用
了解了dategen的基本使用方法,那么下面来结合其他类型的连接器实践一下吧。
场景1 生成一亿条数据到hive表
CREATE TABLE dataGenSourceTable ( order_number BIGINT, price DECIMAL(10, 2), buyer STRING, order_time TIMESTAMP(3) ) WITH ( 'connector'='datagen', 'number-of-rows'='100000000', 'rows-per-second' = '100000' ) ; CREATECATALOG myhive WITH ( 'type'='hive', 'default-database'='default' ); USECATALOG myhive; USE dev; SETtable.sql-dialect=hive; CREATETABLEifnotexists shipu3_test_0932 ( order_number BIGINT, price DECIMAL(10, 2), buyer STRING, order_time TIMESTAMP(3) ) PARTITIONED BY (dt STRING) STORED AS parquet TBLPROPERTIES ( 'partition.time-extractor.timestamp-pattern'='$dt', 'sink.partition-commit.trigger'='partition-time', 'sink.partition-commit.delay'='1 h', 'sink.partition-commit.policy.kind'='metastore,success-file' ); SETtable.sql-dialect=default; insert into myhive.dev.shipu3_test_0932 select order_number,price,buyer,order_time, cast( CURRENT_DATE as varchar) from default_catalog.default_database.dataGenSourceTable;
当每秒生产10万条数据的时候,17分钟左右就可以完成,当然我们可以通过增加Flink任务的计算节点、并行度、提高生产速率'rows-per-second'的值等来更快速的完成大数据量的生产。
场景2 持续每秒生产10万条数到消息队列
CREATE TABLE dataGenSourceTable ( order_number BIGINT, price INT, buyer ROW< first_name STRING, last_name STRING >, order_time TIMESTAMP(3), col_array ARRAY < STRING >, col_map map < STRING, STRING > ) WITH ( 'connector'='datagen', --连接器类型 'rows-per-second'='100000', --生产速率 'fields.order_number.kind'='random', --字段order_number的生产方式 'fields.order_number.min'='1', --字段order_number最小值 'fields.order_number.max'='1000', --字段order_number最大值 'fields.price.kind'='sequence', --字段price的生产方式 'fields.price.start'='1', --字段price开始值 'fields.price.end'='1000', --字段price最大值 'fields.col_array.element.length'='5', --每个元素的长度 'fields.col_map.key.length'='5', --map key的长度 'fields.col_map.value.length'='5' --map value的长度 ) ; CREATE TABLE jdqsink1 ( order_number BIGINT, price DECIMAL(32, 2), buyer ROW< first_name STRING, last_name STRING >, order_time TIMESTAMP(3), col_ARRAY ARRAY < STRING >, col_map map < STRING, STRING > ) WITH ( 'connector'='jdq', 'topic'='jrdw-fk-area_info__1', 'jdq.client.id'='xxxxx', 'jdq.password'='xxxxxxx', 'jdq.domain'='db.test.group.com', 'format'='json' ) ; INSERTINTO jdqsink1 SELECT*FROM dataGenSourceTable;
思考
通过以上案例可以看到,通过Datagen结合其他连接器可以模拟各种场景的数据
- 性能测试:我们可以利用Flink的高处理性能,来调试任务的外部依赖的阈值(超时,限流等)到一个合适的水位,避免自己的任务有过多的外部依赖出现木桶效应;
- 边界条件测试:我们通过使用 Flink DataGen 生成特殊的测试数据,如最小值、最大值、空值、重复值等来验证 Flink 任务在边界条件下的正确性和鲁棒性;
- 数据完整性测试:我们通过Flink DataGen 可以生成包含错误或异常数据的数据集,如无效的数据格式、缺失的字段、重复的数据等。从而可以测试 Flink 任务对异常情况的处理能力,验证 Flink任务在处理数据时是否能够正确地保持数据的完整性。
总之,Flink DataGen 是一个强大的工具,可以帮助测试人员构造各种类型的测试数据。通过合理的使用 ,测试人员可以更有效地进行测试,并发现潜在的问题和缺陷。
作者:京东零售 石朴
来源:京东云开发者社区 转载请注明来源

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
打造炫酷效果:用Java优雅地制作Excel迷你图
摘要:本文由葡萄城技术团队原创并首发。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 前言 迷你图是一种简洁而有效的数据可视化方式,常用于展示趋势和变化。它通常由一组小型的线条或柱状图组成,用于表示数据的变化情况。迷你图的主要特点是占用空间少且易于理解。 迷你图通常被用于数据仪表盘、报告和展示中,以便在有限的空间内展示多个数据集的趋势。通过迷你图,使用者可以快速地分析数据的变化趋势,发现关键信息。今天小编为大家介绍如何在Java中创建Excel迷你图。 1.在Java中创建迷你图 Excel的迷你图一共有三种: 折线图 柱形图 盈亏图 通过下面的代码,可以轻松创建出三种迷你图。 Workbook wb = new Workbook(); IWorksheet sheet = wb.getActiveSheet(); // 定义数据 Object[][] data = new Object[][] { {1, -3, 2}, {4, -6, 5}, {7, -9, 8}, {10, 12, -11} }; sheet.getRange("A1:...
- 下一篇
以效率为导向:用ChatGPT和HttpRunner实现敏捷自动化测试(二) | 京东云技术团队
1、前言 在上一篇文章: 利用ChatGPT提升测试工作效率——测试工程师的新利器(一)中,我们提到了如何通过chatGPT生成单接口测试用例,然后再让chatGPT去根据测试用例去生成接口自动化脚本。本篇文章将详细讲解一下我们团队内部在遇到业务痛点时如何利用Httprunner框架进行接口自动化测试的。当最近邂逅chatGPT后又是如何将二者结合起来,实现"敏捷"自动化测试的。 首先业务测试面对的痛点就是在商业化Devops产品在交付过程中,不同的客户现场和公司内部存在各种各样的环境还有各种国产化系统,并行多个客户交付,多版本需要进行回归测试。如果在有限的人力资源下,通过测试人员人工进行回归的化可能就会不能按时按点完成交付。如何快速的实现接口自动化辅助回归,经过团队内部选型,根据快速性,灵活性,易用性最终选择了HttpRunner框架。最终实现了能在不同的客户现场环境,当运维人员部署完成环境后能够快速实现基本功能回归测试,大大减少了测试人员的回归时间。 接下来详细讲一下我们是如何使用Httprunner通过“点”,“改”,“查”这三板斧进行接口自动化测试的。点就是通过在web前端进行...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- Docker使用Oracle官方镜像安装(12C,18C,19C)
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS7安装Docker,走上虚拟化容器引擎之路
- Linux系统CentOS6、CentOS7手动修改IP地址
- Docker快速安装Oracle11G,搭建oracle11g学习环境
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- CentOS关闭SELinux安全模块
- CentOS7编译安装Gcc9.2.0,解决mysql等软件编译问题
- Hadoop3单机部署,实现最简伪集群
- CentOS6,7,8上安装Nginx,支持https2.0的开启