![CosId Logo]()
CosId 通用、灵活、高性能分布式 ID 生成器
![Integration Test Status]()
更新内容 🎉 🎉 🎉
增强IdGenerator状态统计
- 依赖:更新
com.github.spotbugs 版本 v5.1.2
- 依赖:更新
org.openjdk.jmh 版本 v1.37
- 依赖:更新
org.springdoc:springdoc-openapi-starter-webflux-ui 版本 v2.2.0
- 依赖:更新
org.axonframework:axon-bom 版本 v4.8.2
- 文档:更新 快速使用指南
- 重构:新增
Decorator标记接口到 ClockSyncCosIdGenerator
- 特性:增强
IdGenerator状态统计以支持运行时调试查看
GET http://127.0.0.1:8080/actuator/cosid
{
"__share__": {
"kind": "StringSegmentId",
"actual": {
"kind": "SegmentChainId",
"fetchTime": 1692195877,
"maxId": 430,
"offset": 410,
"sequence": 410,
"step": 20,
"isExpired": false,
"isOverflow": false,
"isAvailable": true,
"converter": {
"kind": "Radix62IdConverter",
"radix": 62,
"charSize": 11,
"padStart": true,
"maxId": 9223372036854775807
}
},
"converter": {
"kind": "PrefixIdConverter",
"prefix": "COSID-",
"actual": {
"kind": "GroupedPrefixIdConverter",
"delimiter": "-",
"actual": {
"kind": "ToStringIdConverter",
"padStart": true,
"charSize": 8 }
}
}
}
}
简介
CosId 旨在提供通用、灵活、高性能的分布式 ID 生成器。
SnowflakeId : 单机 TPS 性能:409W/s JMH 基准测试 , 主要解决 时钟回拨问题 、机器号分配问题 并且提供更加友好、灵活的使用体验。
SegmentId: 每次获取一段 (Step) ID,来降低号段分发器的网络 IO 请求频次提升性能。
IdSegmentDistributor: 号段分发器(号段存储器)
RedisIdSegmentDistributor: 基于 Redis 的号段分发器。
JdbcIdSegmentDistributor: 基于 Jdbc 的号段分发器,支持各种关系型数据库。
ZookeeperIdSegmentDistributor: 基于 Zookeeper 的号段分发器。
SegmentChainId(推荐):SegmentChainId (lock-free) 是对 SegmentId 的增强。性能可达到近似 AtomicLong 的 TPS 性能:12743W+/s JMH 基准测试 。
PrefetchWorker 维护安全距离 (safeDistance), 并且支持基于饥饿状态的动态 safeDistance 扩容 / 收缩。
背景(为什么需要分布式 ID)
在软件系统演进过程中,随着业务规模的增长 (TPS / 存储容量),我们需要通过集群化部署来分摊计算、存储压力。 应用服务的无状态设计使其具备了伸缩性。在使用 Kubernetes 部署时我们只需要一行命令即可完成服务伸缩 (kubectl scale --replicas=5 deployment/order-service)。
但对于有状态的数据库就不那么容易了,此时数据库变成系统的性能瓶颈是显而易见的。
分库分表
从微服务的角度来理解垂直拆分其实就是微服务拆分。以限界上下文来定义服务边界将大服务 / 单体应用拆分成多个自治的粒度更小的服务,因为自治性规范要求,数据库也需要进行业务拆分。 但垂直拆分后的单个微服务依然会面临 TPS / 存储容量 的挑战,所以这里我们重点讨论水平拆分的方式。
![分库分表]()
数据库分库分表方案是逻辑统一,物理分区自治的方案。其核心设计在于中间层映射方案的设计 (上图 Mapping),即分片算法的设计。 几乎所有编程语言都内置实现了散列表 (java:HashMap/csharp:Dictionary/python:dict/go:map ...)。分片算法跟散列表高度相似 (hashCode),都得通过 key/shardingValue 映射到对应的槽位 (slot)。
那么 shardingValue 从哪里来呢?CosId!!
当然还有很多分布式场景需要分布式 ID,这里不再一一列举。
分布式 ID 方案的核心指标
- 全局(相同业务)唯一性:唯一性保证是 ID 的必要条件,假设 ID 不唯一就会产生主键冲突,这点很容易可以理解。
- 通常所说的全局唯一性并不是指所有业务服务都要唯一,而是相同业务服务不同部署副本唯一。 比如 Order 服务的多个部署副本在生成
t_order 这张表的 Id 时是要求全局唯一的。至于 t_order_item 生成的 ID 与 t_order 是否唯一,并不影响唯一性约束,也不会产生什么副作用。 不同业务模块间也是同理。即唯一性主要解决的是 ID 冲突问题。
- 有序性:有序性保证是面向查询的数据结构算法(除了 Hash 算法)所必须的,是二分查找法 (分而治之) 的前提。
- MySq-InnoDB B + 树是使用最为广泛的,假设 Id 是无序的,B+ 树 为了维护 ID 的有序性,就会频繁的在索引的中间位置插入而挪动后面节点的位置,甚至导致频繁的页分裂,这对于性能的影响是极大的。那么如果我们能够保证 ID 的有序性这种情况就完全不同了,只需要进行追加写操作。所以 ID 的有序性是非常重要的,也是 ID 设计不可避免的特性。
- 吞吐量 / 性能 (ops/time):即单位时间(每秒)能产生的 ID 数量。生成 ID 是非常高频的操作,也是最为基本的。假设 ID 生成的性能缓慢,那么不管怎么进行系统优化也无法获得更好的性能。
- 一般我们会首先生成 ID,然后再执行写入操作,假设 ID 生成缓慢,那么整体性能上限就会受到限制,这一点应该不难理解。
- 稳定性 (time/op):稳定性指标一般可以采用每个操作的时间进行百分位采样来分析,比如 CosId 百分位采样 P9999=0.208 us/op,即 0% ~ 99.99% 的单位操作时间小于等于 0.208 us/op。
- 百分位数 WIKI :统计学术语,若将一组数据从小到大排序,并计算相应的累计百分点,则某百分点所对应数据的值,就称为这百分点的百分位数,以 Pk 表示第 k 百分位数。百分位数是用来比较个体在群体中的相对地位量数。
- 为什么不用平均每个操作的时间:马老师的身价跟你的身价能平均么?平均后的值有意义不?
- 可以使用最小每个操作的时间、最大每个操作的时间作为参考吗?因为最小、最大值只说明了零界点的情况,虽说可以作为稳定性的参考,但依然不够全面。而且百分位数已经覆盖了这俩个指标。
- 自治性(依赖):主要是指对外部环境有无依赖,比如号段模式会强依赖第三方存储中间件来获取
NexMaxId。自治性还会对可用性造成影响。
- 可用性:分布式 ID 的可用性主要会受到自治性影响,比如 SnowflakeId 会受到时钟回拨影响,导致处于短暂时间的不可用状态。而号段模式会受到第三方发号器(
NexMaxId)的可用性影响。
- 可用性 WIKI :在一个给定的时间间隔内,对于一个功能个体来讲,总的可用时间所占的比例。
- MTBF:平均故障间隔
- MDT:平均修复 / 恢复时间
- Availability=MTBF/(MTBF+MDT)
- 假设 MTBF 为 1 年,MDT 为 1 小时,即
Availability=(365*24)/(365*24+1)=0.999885857778792≈99.99%,也就是我们通常所说对可用性 4 个 9。
- 适应性:是指在面对外部环境变化的自适应能力,这里我们主要说的是面对流量突发时动态伸缩分布式 ID 的性能,
- SegmentChainId 可以基于饥饿状态进行安全距离的动态伸缩。
- SnowflakeId 常规位分配方案性能恒定 409.6W,虽然可以通过调整位分配方案来获得不同的 TPS 性能,但是位分配方法的变更是破坏性的,一般根据业务场景确定位分配方案后不再变更。
- 存储空间:还是用 MySq-InnoDB B + 树来举例,普通索引(二级索引)会存储主键值,主键越大占用的内存缓存、磁盘空间也会越大。Page 页存储的数据越少,磁盘 IO 访问的次数会增加。总之在满足业务需求的情况下,尽可能小的存储空间占用在绝大多数场景下都是好的设计原则。
不同分布式 ID 方案核心指标对比
| 分布式 ID |
全局唯一性 |
有序性 |
吞吐量 |
稳定性(1s=1000,000us) |
自治性 |
可用性 |
适应性 |
存储空间 |
| UUID/GUID |
是 |
完全无序 |
3078638(ops/s) |
P9999=0.325(us/op) |
完全自治 |
100% |
否 |
128-bit |
| SnowflakeId |
是 |
本地单调递增,全局趋势递增 (受全局时钟影响) |
4096000(ops/s) |
P9999=0.244(us/op) |
依赖时钟 |
时钟回拨会导致短暂不可用 |
否 |
64-bit |
| SegmentId |
是 |
本地单调递增,全局趋势递增 (受 Step 影响) |
29506073(ops/s) |
P9999=46.624(us/op) |
依赖第三方号段分发器 |
受号段分发器可用性影响 |
否 |
64-bit |
| SegmentChainId |
是 |
本地单调递增,全局趋势递增 (受 Step、安全距离影响) |
127439148(ops/s) |
P9999=0.208(us/op) |
依赖第三方号段分发器 |
受号段分发器可用性影响,但因安全距离存在,预留 ID 段,所以高于 SegmentId |
是 |
64-bit |
有序性 (要想分而治之・二分查找法,必须要维护我)
刚刚我们已经讨论了 ID 有序性的重要性,所以我们设计 ID 算法时应该尽可能地让 ID 是单调递增的,比如像表的自增主键那样。但是很遗憾,因全局时钟、性能等分布式系统问题,我们通常只能选择局部单调递增、全局趋势递增的组合(就像我们在分布式系统中不得不的选择最终一致性那样)以获得多方面的权衡。下面我们来看一下什么是单调递增与趋势递增。
有序性之单调递增
![单调递增]()
单调递增:T 表示全局绝对时点,假设有 Tn+1>Tn(绝对时间总是往前进的,这里不考虑相对论、时间机器等),那么必然有 F (Tn+1)>F (Tn),数据库自增主键就属于这一类。 另外需要特别说明的是单调递增跟连续性递增是不同的概念。 连续性递增:F(n+1)=(F(n)+step) 即下一次获取的 ID 一定等于当前 ID+Step,当 Step=1 时类似于这样一个序列:1->2->3->4->5。
扩展小知识:数据库的自增主键也不是连续性递增的,相信你一定遇到过这种情况,请思考一下数据库为什么这样设计?
有序性之趋势递增
![趋势递增]()
趋势递增:Tn>Tn-s,那么大概率有 F (Tn)>F (Tn-s)。虽然在一段时间间隔内有乱序,但是整体趋势是递增。从上图上看,是有上升趋势的(趋势线)。
- 在 SnowflakeId 中 n-s 受到全局时钟同步影响。
- 在号段模式 (SegmentId) 中 n-s 受到号段可用区间 (
Step) 影响。
分布式 ID 分配方案
UUID/GUID
不依赖任何第三方中间件
性能高
完全无序
空间占用大,需要占用 128 位存储空间。
UUID 最大的缺陷是随机的、无序的,当用于主键时会导致数据库的主键索引效率低下(为了维护索引树,频繁的索引中间位置插入数据,而不是追加写)。这也是 UUID 不适用于数据库主键的最为重要的原因。
SnowflakeId
![Snowflake 雪花算法]()
SnowflakeId 使用 Long(64-bit)位分区来生成 ID 的一种分布式 ID 算法。 通用的位分配方案为:timestamp(41-bit)+machineId(10-bit)+sequence(12-bit)=63-bit。
- 41-bit
timestamp=(1L<<41)/(1000/3600/365),约可以存储 69 年的时间戳,即可以使用的绝对时间为 EPOCH+69 年,一般我们需要自定义 EPOCH 为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。
- 10-bit
machineId=(1L<<10)=1024,即相同业务可以部署 1024 个副本 (在 Kubernetes 概念里没有主从副本之分,这里直接沿用 Kubernetes 的定义)。一般情况下没有必要使用这么多位,所以会根据部署规模需要重新定义。
- 12-bit
sequence=(1L<<12)*1000=4096000,即单机每秒可生成约 409W 的 ID,全局同业务集群可产生 4096000*1024=419430W=41.9亿(TPS)。
从 SnowflakeId 设计上可以看出:
![👍]()
timestamp 在高位,单实例 SnowflakeId 是会保证时钟总是向前的(校验本机时钟回拨),所以是本机单调递增的。受全局时钟同步 / 时钟回拨影响 SnowflakeId 是全局趋势递增的。
SnowflakeId 不对任何第三方中间件有强依赖关系,并且性能也非常高。
位分配方案可以按照业务系统需要灵活配置,来达到最优使用效果。
强依赖本机时钟,潜在的时钟回拨问题会导致 ID 重复、处于短暂的不可用状态。
![👎]()
machineId 需要手动设置,实际部署时如果采用手动分配 machineId,会非常低效。
SnowflakeId 之机器号分配问题
在 SnowflakeId 中根据业务设计的位分配方案确定了基本上就不再有变更了,也很少需要维护。但是 machineId 总是需要配置的,而且集群中是不能重复的,否则分区原则就会被破坏而导致 ID 唯一性原则破坏,当集群规模较大时 machineId 的维护工作是非常繁琐,低效的。
有一点需要特别说明的,SnowflakeId 的 MachineId 是逻辑上的概念,而不是物理概念。 想象一下假设 MachineId 是物理上的,那么意味着一台机器拥有只能拥有一个 MachineId,那会产生什么问题呢?
目前 CosId 提供了以下五种 MachineId 分配器。
- ManualMachineIdDistributor: 手动配置
machineId,一般只有在集群规模非常小的时候才有可能使用,不推荐。
- StatefulSetMachineIdDistributor: 使用
Kubernetes 的 StatefulSet 提供的稳定的标识 ID(HOSTNAME=service-01)作为机器号。
- RedisMachineIdDistributor: 使用 Redis 作为机器号的分发存储,同时还会存储
MachineId 的上一次时间戳,用于启动时时钟回拨的检查。
- JdbcMachineIdDistributor: 使用关系型数据库作为机器号的分发存储,同时还会存储
MachineId 的上一次时间戳,用于启动时时钟回拨的检查。
- ZookeeperMachineIdDistributor: 使用 ZooKeeper 作为机器号的分发存储,同时还会存储
MachineId 的上一次时间戳,用于启动时时钟回拨的检查。
![Redis MachineId Distributor]()
![Machine Id Safe Guard]()
SnowflakeId 之时钟回拨问题
时钟回拨的致命问题是会导致 ID 重复、冲突(这一点不难理解),ID 重复显然是不能被容忍的。 在 SnowflakeId 算法中,按照 MachineId 分区 ID,我们不难理解的是不同 MachineId 是不可能产生相同 ID 的。所以我们解决的时钟回拨问题是指当前 MachineId 的时钟回拨问题,而不是所有集群节点的时钟回拨问题。
MachineId 时钟回拨问题大体可以分为俩种情况:
- 运行时时钟回拨:即在运行时获取的当前时间戳比上一次获取的时间戳小。这个场景的时钟回拨是很容易处理的,一般 SnowflakeId 代码实现时都会存储
lastTimestamp 用于运行时时钟回拨的检查,并抛出时钟回拨异常。
- 时钟回拨时直接抛出异常是不太好地实践,因为下游使用方几乎没有其他处理方案(噢,我还能怎么办呢,等吧),时钟同步是唯一的选择,当只有一种选择时就不要再让用户选择了。
ClockSyncSnowflakeId 是 SnowflakeId 的包装器,当发生时钟回拨时会使用 ClockBackwardsSynchronizer 主动等待时钟同步来重新生成 ID,提供更加友好的使用体验。
- 启动时时钟回拨:即在启动服务实例时获取的当前时钟比上次关闭服务时小。此时的
lastTimestamp 是无法存储在进程内存中的。当获取的外部存储的机器状态大于当前时钟时钟时,会使用 ClockBackwardsSynchronizer 主动同步时钟。
- LocalMachineStateStorage:使用本地文件存储
MachineState(机器号、最近一次时间戳)。因为使用的是本地文件所以只有当实例的部署环境是稳定的,LocalMachineStateStorage 才适用。
- RedisMachineIdDistributor:将
MachineState 存储在 Redis 分布式缓存中,这样可以保证总是可以获取到上次服务实例停机时机器状态。
SnowflakeId 之 JavaScript 数值溢出问题
JavaScript 的 Number.MAX_SAFE_INTEGER 只有 53-bit,如果直接将 63 位的 SnowflakeId 返回给前端,那么会产生值溢出的情况(所以这里我们应该知道后端传给前端的 long 值溢出问题,迟早会出现,只不过 SnowflakeId 出现得更快而已)。 很显然溢出是不能被接受的,一般可以使用以下俩种处理方案:
- 将生成的 63-bit
SnowflakeId 转换为 String 类型。
- 直接将
long 转换成 String。
- 使用
SnowflakeFriendlyId 将 SnowflakeId 转换成比较友好的字符串表示:{timestamp}-{machineId}-{sequence} -> 20210623131730192-1-0
- 自定义
SnowflakeId 位分配来缩短 SnowflakeId 的位数(53-bit)使 ID 提供给前端时不溢出
- 使用
SafeJavaScriptSnowflakeId(JavaScript 安全的 SnowflakeId)
号段模式(SegmentId)
![Segment Id]()
从上面的设计图中,不难看出号段模式基本设计思路是通过每次获取一定长度(Step)的可用 ID(Id 段 / 号段),来降低网络 IO 请求次数,提升性能。
强依赖第三方号段分发器,可用性受到第三方分发器影响。
每次号段用完时获取 NextMaxId 需要进行网络 IO 请求,此时的性能会比较低。
- 单实例 ID 单调递增,全局趋势递增。
- 从设计图中不难看出 Instance 1 每次获取的
NextMaxId,一定比上一次大,意味着下一次的号段一定比上一次大,所以从单实例上来看是单调递增的。
- 多实例各自持有的不同的号段,意味着同一时刻不同实例生成的 ID 是乱序的,但是整体趋势的递增的,所以全局趋势递增。
- ID 乱序程度受到 Step 长度以及集群规模影响(从趋势递增图中不难看出)。
- 假设集群中只有一个实例时号段模式就是单调递增的。
Step 越小,乱序程度越小。当 Step=1 时,将无限接近单调递增。需要注意的是这里是无限接近而非等于单调递增,具体原因你可以思考一下这样一个场景:
- 号段分发器 T1 时刻给 Instance 1 分发了
ID=1,T2 时刻给 Instance 2 分发了 ID=2。因为机器性能、网络等原因,Instance 2 网络 IO 写请求先于 Instance 1 到达。那么这个时候对于数据库来说,ID 依然是乱序的。
号段链模式(SegmentChainId)
分布式 ID (CosId) 之号段链模式性能 (1.2 亿 /s) 解析
![Segment Chain Id]()
SegmentChainId 是 SegmentId 增强版,相比于 SegmentId 有以下优势:
- 稳定性:SegmentId 的稳定性问题(P9999=46.624 (us/op))主要是因为号段用完之后同步进行
NextMaxId 的获取导致的(会产生网络 IO)。
- SegmentChainId (P9999=0.208 (us/op))引入了新的角色 PrefetchWorker 用以维护和保证安全距离,理想情况下使得获取 ID 的线程几乎完全不需要进行同步的等待
NextMaxId 获取,性能可达到近似 AtomicLong 的 TPS 性能:12743W+/s JMH 基准测试 。
- 适应性:从 SegmentId 介绍中我们知道了影响 ID 乱序的因素有俩个:集群规模、
Step 大小。集群规模是我们不能控制的,但是 Step 是可以调节的。
Step 应该近可能小才能使得 ID 单调递增的可能性增大。
Step 太小会影响吞吐量,那么我们如何合理设置 Step 呢?答案是我们无法准确预估所有时点的吞吐量需求,那么最好的办法是吞吐量需求高时,Step 自动增大,吞吐量低时 Step 自动收缩。
- SegmentChainId 引入了饥饿状态的概念,PrefetchWorker 会根据饥饿状态检测当前安全距离是否需要膨胀或者收缩,以便获得吞吐量与有序性之间的权衡,这便是 SegmentChainId 的自适应性。
集成
CosIdPlugin(MyBatis 插件)
Kotlin DSL
implementation("me.ahoo.cosid:cosid-mybatis:${cosidVersion}")
public class Order {
@CosId(value = "order")
private Long orderId;
private Long userId;
public Long getOrderId() {
return orderId;
}
public void setOrderId(Long orderId) {
this.orderId = orderId;
}
public Long getUserId() {
return userId;
}
public void setUserId(Long userId) {
this.userId = userId;
}
}
ShardingSphere 插件
CosIdKeyGenerateAlgorithm、CosIdModShardingAlgorithm、CosIdIntervalShardingAlgorithm 已合并至 ShardingSphere 官方,未来 cosid-shardingsphere 模块的维护可能会以官方为主。
Kotlin DSL
implementation("me.ahoo.cosid:cosid-shardingsphere:${cosidVersion}")
CosIdKeyGenerateAlgorithm (分布式主键)
spring:
shardingsphere:
rules:
sharding:
key-generators:
cosid:
type: COSID
props:
id-name: __share__
基于间隔的时间范围分片算法
![CosId Interval Sharding Algorithm]()
- 易用性:支持多种数据类型 (
Long/LocalDateTime/DATE/ String / SnowflakeId),而官方实现是先转换成字符串再转换成 LocalDateTime,转换成功率受时间格式化字符影响。
- 性能:相比于
org.apache.shardingsphere.sharding.algorithm.sharding.datetime.IntervalShardingAlgorithm 性能高出 1200~4000 倍。
| PreciseShardingValue |
RangeShardingValue |
![Throughput Of IntervalShardingAlgorithm - PreciseShardingValue]() |
![Throughput Of IntervalShardingAlgorithm - RangeShardingValue]() |
- CosIdIntervalShardingAlgorithm
- SnowflakeIntervalShardingAlgorithm
- type: COSID_INTERVAL_SNOWFLAKE
spring:
shardingsphere:
rules:
sharding:
sharding-algorithms:
alg-name:
type: COSID_INTERVAL_{type_suffix}
props:
logic-name-prefix: logic-name-prefix
id-name: cosid-name
datetime-lower: 2021-12-08 22:00:00
datetime-upper: 2022-12-01 00:00:00
sharding-suffix-pattern: yyyyMM
datetime-interval-unit: MONTHS
datetime-interval-amount: 1
取模分片算法
![CosIdModShardingAlgorithm]()
- 性能:相比于
org.apache.shardingsphere.sharding.algorithm.sharding.mod.ModShardingAlgorithm 性能高出 1200~4000 倍。并且稳定性更高,不会出现严重的性能退化。
| PreciseShardingValue |
RangeShardingValue |
![Throughput Of ModShardingAlgorithm - PreciseShardingValue]() |
![Throughput Of ModShardingAlgorithm - RangeShardingValue]() |
spring:
shardingsphere:
rules:
sharding:
sharding-algorithms:
alg-name:
type: COSID_MOD
props:
mod: 4
logic-name-prefix: t_table_
性能测试报告
SegmentChainId - 吞吐量 (ops/s)
![Throughput-Of-SegmentChainId]()
SegmentChainId - 每次操作耗时的百分位数 (us/op)
百分位数 ,统计学术语,若将一组数据从小到大排序,并计算相应的累计百分点,则某百分点所对应数据的值,就称为这百分点的百分位数,以 Pk 表示第 k 百分位数。百分位数是用来比较个体在群体中的相对地位量数。
![Percentile-Sample-Of-SegmentChainId]()
CosId VS 美团 Leaf
CosId (SegmentChainId) 性能是 Leaf (segment) 的 5 倍。
![CosId VS 美团 Leaf]()