ImageBind —— 多模态 AI 模型
ImageBind 是支持绑定来自六种不同模态(图像、文本、音频、深度、温度和 IMU 数据)的信息的 AI 模型,它将这些信息统一到单一的嵌入式表示空间中,使得机器能够更全面、直接地从多种信息中学习,而无需明确的监督(即组织和标记原始数据的过程)。 ImageBind 通过将文本、图像/视频和音频、视觉、温度还有运动数据流串联在一起,形成一个单一的 embedding space,让机器能从多维度来理解世界,也能创造沉浸式的多感官体验。 ImageBind 通过将六种模式的嵌入对齐到一个共享的空间,实现了跨模式检索,这就能搜索那些没有同时出现的不同类型的内容。把不同的模式嵌入叠加,可以自然地构造它们的语义。例如 ImageBind 可以与 DALLE-2 解码器和 CLIP 文本一起嵌入,生成音频到图像的映射,就像人类听到声音脑补画面的那种感觉。 示例代码 跨模态(例如图像、文本和音频)提取和比较特征。 import data import torch from models import imagebind_model from models.imagebind_mode...
