首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/4939618/blog/8586998

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

喜马拉雅基于 HybridBackend 的深度学习模型训练优化实践

喜马拉雅作者:李超、陶云、许晨昱、胡文俊、张争光、赵云鹏、张玉静 喜马拉雅AI云借助阿里云提供的HybridBackend开源框架,实现了其推荐模型在 GPU 上的高效训练。 业务介绍 推荐场景是喜马拉雅app的重要应用之一,它广泛应用于热点、猜你喜欢、私人FM、首页信息流、发现页推荐、每日必听等模块。这些模块都依赖于喜马拉雅AI云,这是一套从数据、特征、模型到服务的全流程一站式算法工具平台。 推荐服务的一个核心诉求是能快速捕捉和反映用户不断变化的兴趣和当前热点,这就要求模型能在短时间内,以可控的成本完成对海量用户数据的训练。使用GPU等高性能硬件来加速模型训练已经成为CV, NLP等领域的行业标准;在使用稀疏训练数据的推荐场景下,国内外的各大厂商也在积极转向使用高性能GPU来替代传统的CPU训练集群,以提升训练的效率。 喜马拉雅AI云借助阿里云机器学习平台PAI的开源框架HybridBackend,实现了其推荐模型在 GPU 上的高效训练。在加速训练的同时, HybridBackend 框架高度易用,帮助其算法团队提升了开发效率。 问题与挑战 随着推荐业务的底层训练硬件逐渐从CPU向...

详解目标检测模型的评价指标及代码实现

摘要:为了评价模型的泛化能力,即判断模型的好坏,我们需要用某个指标来衡量,有了评价指标,就可以对比不同模型的优劣,并通过这个指标来进一步调参优化模型。 本文分享自华为云社区《目标检测模型的评价指标详解及代码实现》,作者:嵌入式视觉。 前言 为了了解模型的泛化能力,即判断模型的好坏,我们需要用某个指标来衡量,有了评价指标,就可以对比不同模型的优劣,并通过这个指标来进一步调参优化模型。对于分类和回归两类监督模型,分别有各自的评判标准。 不同的问题和不同的数据集都会有不同的模型评价指标,比如分类问题,数据集类别平衡的情况下可以使用准确率作为评价指标,但是现实中的数据集几乎都是类别不平衡的,所以一般都是采用 AP 作为分类的评价指标,分别计算每个类别的 AP,再计算mAP。 一,精确率、召回率与F1 1.1,准确率 准确率(精度) – Accuracy,预测正确的结果占总样本的百分比,定义如下: 准确率=(TP+TN)/(TP+TN+FP+FN) 错误率和精度虽然常用,但是并不能满足所有任务需求。以西瓜问题为例,假设瓜农拉来一车西瓜,我们用训练好的模型对西瓜进行判别,现如精度只能衡量有多少比例...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

JDK

JDK

JDK是 Java 语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。

Sublime Text

Sublime Text

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。