每日一博 | 总结了 6 种卷积神经网络压缩方法
摘要:神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型。 本文分享自华为云社区《卷积神经网络压缩方法总结》,作者:嵌入式视觉 。 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好。神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型。 按照压缩过程对网络结构的破坏程度,我们将模型压缩技术分为“前端压缩”和“后端压缩”两部分。 前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏、轻量级网络(紧凑的模型结构设计)以及滤波器(filter)层面的剪枝(结构化剪枝)等; 后端压缩,是指包括低秩近似、未加限制的剪枝(非结构化剪枝/稀疏)、参数量化以及二值网络等,目标在于尽可能减少模型大小,会对原始网络结构造成极大程度的改造。 总结:前端压缩几乎不改变原有网络结构(仅仅只是在原模型基础上减少了网络的层数或者滤波器个数),后端压缩对网络结构有不可逆的大幅度改变,造成原有深度学习库、甚至硬件设备不兼容改变之后的网络。其维护成本很高。 一,低秩近...
