首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/6150560/blog/5587717

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

前端监控系列4 | SDK 体积与性能优化实践

背景 字节各类业务拥有众多用户群,作为字节前端性能监控 SDK,自身若存在性能问题,则会影响到数以亿计的真实用户的体验。所以此类 SDK 自身的性能在设计之初,就必须达到一个非常极致的水准。 与此同时,随着业务不断迭代,功能变得越来越多,对监控的需求也会变得越来越多。例如,今天 A 业务更新了架构,想要自定义性能指标的获取规则,明天 B 业务接入了微前端框架,需要监控子应用的性能。在解决这些业务需求的同时,我们会不断加入额外的判断逻辑、配置项。同时由于用户的电脑性能、浏览器环境的不同,我们又要解决各种兼容性问题,加入 polyfill 等代码,不可避免地造成 SDK 体积膨胀,性能劣化。那么我们是如何在需求和功能不断迭代的情况下,持续追踪和优化 SDK 的体积和性能的呢? SDK 体积优化 通常而言,体积的优化是最容易拿到收益的一项。 由于监控 SDK 通常作为第一个脚本被加载到页面中,体积的膨胀不仅会增加用户的下载时间,还会增加浏览器解析脚本的时间。对于体积优化,我们可以从宏观和微观两个角度去实现。 微观上,我们会去尽可能去精简所有的表达,剥离冗余重复代码,同时尽可能减少以下写法的出...

openGauss 3.1.0 的新型选择率模型大解密

国产数据库openGauss 9.30日新出了3.1.0版本,有哪些新的特性呢?我们计划出个系列详细介绍一下,期望大家多多支持~ 选择率估算作为代价模型行数估算的基础,其准确性影响着优化器查询计划的选取,数据库优化器生成的不同查询计划之间可以达到数个数量级的区别。 文章目录 一、当前经典数据库优化器对于等值查询估计的缺点 二、openGauss的新型选择率模型 三、使用示例 一、当前经典数据库优化器对于等值查询估计的缺点 例如,目前形如a = 1的等值谓词选择率估算可以有以下几种方法: 利用统计信息估算: 对查询语句中的等值条件,可分为MCV值和非MCV值进行估算: 对MCV值,使用MCV对应的频率统计信息作为选择率; 对非MCV值,使用如下经验公式: 直接对所有值做均匀假设,不考虑MCV: 在线计算: 使用Count-Mean-Min Sketch等频率估算方法,在线计算每个常量值的选择率。 在上述方法中,方法1对全部或者部分数据做均匀分布假设,计算量小,优化器负担轻,但估算粗略,对大多数常量选择率估值不准确;方法2对每个常量值都进行单独的计算,计算结果较为准确,但是优化器的计算负担...

相关文章

发表评论

资源下载

更多资源
优质分享App

优质分享App

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Spring

Spring

Spring框架(Spring Framework)是由Rod Johnson于2002年提出的开源Java企业级应用框架,旨在通过使用JavaBean替代传统EJB实现方式降低企业级编程开发的复杂性。该框架基于简单性、可测试性和松耦合性设计理念,提供核心容器、应用上下文、数据访问集成等模块,支持整合Hibernate、Struts等第三方框架,其适用范围不仅限于服务器端开发,绝大多数Java应用均可从中受益。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

用户登录
用户注册