您现在的位置是:首页 > 文章详情

Java中大集合求交集的方法比较

日期:2021-12-28点击:577

背景

项目中使用到List求交集,很容易想到collecion.retainAll()方法,但是在数据量比较大时,这个方法效率并不高。本文研究了几种常用的方法,以供大家参考。

 

方法

【首先】梳理下思路,List去重一般有几种方法。

  1. 『外层遍历+内层遍历』查找:

复杂度O(NM) ,一般使用contains()检查是否包含

  1. 『外层遍历+内层Hash』查找:

复杂度O(N),一般将内层List转化为HashSet实现

  1. 『外层遍历+内层bitMap』查找:

复杂度O(N),一般将内层List转化为字节映射实现

 

【其次】这里其实忽略了一个点,就是 『单层遍历』中,检查 元素不包含 时,需要将这个元素移除(即remove方法)。remove时,也会导致性能问题。

这里面我们使用Java8中java.util.AbstractCollection#retainAll方法来验证下我们的思路。

 // Java8 中 方法:java.util.AbstractCollection#retainAll public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); boolean modified = false; Iterator<E> it = iterator(); // 1. 外层遍历 while (it.hasNext()) { // 2. 内层查找『是否包含』 if (!c.contains(it.next())) { // 3. 不包含时,移除外层元素 it.remove(); modified = true; } } return modified; }

这里用图总结下,求交集的流程:

 

实现

1.『外层遍历+内层遍历』查找:

java中常用2种遍历查找的List:ArrayList、LinkedList,在内外层中测试。

 // 外层:ArrayList,内层:ArrayList private void outArrayListInnerArrayList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[ArrayList-ArrayList]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:ArrayList private void outLinkedListInnerArrayList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-ArrayList]RetainAll耗时:" + (end - begin)); } // 外层:ArrayList,内层:LinkedList private void outArrayListInnerLinkedList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-ArrayList]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:LinkedList private void outLinkedListInnerLinkedList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-LinkedList]RetainAll耗时:" + (end - begin)); }

 

2.『外层遍历+内层Hash』查找:

java中常用HashSet,内层替换为HashSet查找。

 // 外层:ArrayList,内层:HashSet private void outArrayListInnerHashSet(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); HashSet<Long> setB = new HashSet<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[ArrayList-HashSet]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:HashSet private void outLinkedListInnerHashSet(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); HashSet<Long> setB = new HashSet<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-HashSet]RetainAll耗时:" + (end - begin)); }

 

3.『外层遍历+内层bitMap』查找:

BitSet也称作BitMap,它是一种通用的快速数据结构,不幸的是它太费内存,所以通常我们使用压缩位图。RoaringBitmap是一种压缩位置,它提供更好的压缩效果,在某些情况下比其它压缩位图快好几百倍。

https://github.com/RoaringBitmap/RoaringBitmap

RoaringBitmap已经使用在很多知名的开源项目中:

  • Apache Spark
  • Apache Hive
  • Apache Tez
  • Apache Kylin
  • ... ...

Roaringbitmap中在Long类型中,提供了2种实现Roaring64NavigableMapRoaring64BitmapRoaring64NavigableMap基于红黑树实现,Roaring64Bitmap基于ART(The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases )数据结构实现。

那么,外层使用ArrayList、LinkedList,内层使用Roaring64NavigableMap、Roaring64Bitmap。 

 // 外层:ArrayList,内层:Roaring64NavigableMap private void outArrayListInnerRoaring64NavigableMap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); Roaring64NavigableMap ansB = new Roaring64NavigableMap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[ArrayList-Roaring64NavigableMap]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:Roaring64NavigableMap private void outLinkedListInnerRoaring64NavigableMap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); Roaring64NavigableMap ansB = new Roaring64NavigableMap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[LinkedList-Roaring64NavigableMap]RetainAll耗时:" + (end - begin)); } // 外层:ArrayList,内层:Roaring64Bitmap private void outArrayListInnerRoaring64Bitmap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); Roaring64NavigableMap ansB = new Roaring64NavigableMap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[ArrayList-Roaring64Bitmap]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:Roaring64Bitmap private void outLinkedListInnerRoaring64Bitmap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); Roaring64Bitmap ansB = new Roaring64Bitmap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[LinkedList-Roaring64Bitmap]RetainAll耗时:" + (end - begin)); }

 

测试结果

使用Mac Pro 2021 M1 + JDK8测试,100万级的数据太慢,实行中没有太大参考意义,有兴趣可以自行测试。

说明:由于受数据,以及电脑本身负载影响,测试结果可能不一致,仅做量级参考。

 

 

查找方法(外层-内层)

1万(毫秒)

10万(毫秒)

20万(毫秒)

50万(毫秒)

『外层遍历+内层遍历』查找

ArrayList-ArrayList

67

5502

26280

264133

LinkedList-ArrayList

63

5418

27961

272362

LinkedList-ArrayList

57

5436

21330

260976

LinkedList-LinkedList

59

5153

23251

252472

『外层遍历+内层Hash』查找

ArrayList-HashSet

8

46

75

102

LinkedList-HashSet

8

17

49

82

『外层遍历+内层bitMap』查找

ArrayList-Roaring64NavigableMap

91

265

719

876

LinkedList-Roaring64NavigableMap

26

125

562

876

ArrayList-Roaring64Bitmap

20

78

572

801

LinkedList-Roaring64Bitmap

119

171

221

384

附录

pom.xml

 <dependency> <groupId>org.roaringbitmap</groupId> <artifactId>RoaringBitmap</artifactId> <version>0.9.23</version> </dependency>

完整测试代码

 import org.apache.commons.lang.math.RandomUtils; import org.junit.Test; import org.roaringbitmap.longlong.Roaring64Bitmap; import org.roaringbitmap.longlong.Roaring64NavigableMap; import java.util.ArrayList; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Random; public class SetOperation { /** * 集合的运算方法用时测试 */ @Test public void setOperation() { int size = 50_0000; List<Long> listA = new ArrayList<>(size); List<Long> listB = new ArrayList<>(size); initData(size, listA, listB); //『外层遍历+内层遍历』查找 System.out.println("1. 『外层遍历+内层遍历』查找"); outArrayListInnerArrayList(new ArrayList<>(listA), new ArrayList<>(listB)); outLinkedListInnerArrayList(new ArrayList<>(listA), new ArrayList<>(listB)); outArrayListInnerLinkedList(new ArrayList<>(listA), new ArrayList<>(listB)); outLinkedListInnerLinkedList(new ArrayList<>(listA), new ArrayList<>(listB)); //『外层遍历+内层Hash』查找: System.out.println("2.『外层遍历+内层Hash』查找:"); outArrayListInnerHashSet(new ArrayList<>(listA), new ArrayList<>(listB)); outLinkedListInnerHashSet(new ArrayList<>(listA), new ArrayList<>(listB)); //『外层遍历+内层bitMap』查找 System.out.println("3.『外层遍历+内层bitMap』查找"); outArrayListInnerRoaring64NavigableMap(new ArrayList<>(listA), new ArrayList<>(listB)); outLinkedListInnerRoaring64NavigableMap(new ArrayList<>(listA), new ArrayList<>(listB)); outArrayListInnerRoaring64Bitmap(new ArrayList<>(listA), new ArrayList<>(listB)); outLinkedListInnerRoaring64Bitmap(new ArrayList<>(listA), new ArrayList<>(listB)); } // 外层:ArrayList,内层:ArrayList private void outArrayListInnerArrayList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[ArrayList-ArrayList]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:ArrayList private void outLinkedListInnerArrayList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-ArrayList]RetainAll耗时:" + (end - begin)); } // 外层:ArrayList,内层:LinkedList private void outArrayListInnerLinkedList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-ArrayList]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:LinkedList private void outLinkedListInnerLinkedList(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); ArrayList<Long> setB = new ArrayList<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-LinkedList]RetainAll耗时:" + (end - begin)); } // 外层:ArrayList,内层:HashSet private void outArrayListInnerHashSet(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); HashSet<Long> setB = new HashSet<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[ArrayList-HashSet]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:HashSet private void outLinkedListInnerHashSet(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); HashSet<Long> setB = new HashSet<>(listB); setA.retainAll(setB); long end = System.currentTimeMillis(); System.out.println("[LinkedList-HashSet]RetainAll耗时:" + (end - begin)); } // 外层:ArrayList,内层:Roaring64NavigableMap private void outArrayListInnerRoaring64NavigableMap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); Roaring64NavigableMap ansB = new Roaring64NavigableMap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[ArrayList-Roaring64NavigableMap]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:Roaring64NavigableMap private void outLinkedListInnerRoaring64NavigableMap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); Roaring64NavigableMap ansB = new Roaring64NavigableMap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[LinkedList-Roaring64NavigableMap]RetainAll耗时:" + (end - begin)); } // 外层:ArrayList,内层:Roaring64Bitmap private void outArrayListInnerRoaring64Bitmap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); ArrayList<Long> setA = new ArrayList<>(listA); Roaring64NavigableMap ansB = new Roaring64NavigableMap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[ArrayList-Roaring64Bitmap]RetainAll耗时:" + (end - begin)); } // 外层:LinkedList,内层:Roaring64Bitmap private void outLinkedListInnerRoaring64Bitmap(List<Long> listA, List<Long> listB) { long begin = System.currentTimeMillis(); LinkedList<Long> setA = new LinkedList<>(listA); Roaring64Bitmap ansB = new Roaring64Bitmap(); listB.forEach(ansB::addLong); setA.removeIf(e -> !ansB.contains(e)); long end = System.currentTimeMillis(); System.out.println("[LinkedList-Roaring64Bitmap]RetainAll耗时:" + (end - begin)); } private void initData(int size, List<Long> listA, List<Long> listB) { Random random = new Random(); Random random2 = new Random(); random.longs(size).forEach(e -> { listA.add(e); if (random2.nextFloat() > 0.5) { listB.add(e); } else { listB.add(RandomUtils.nextLong()); } }); } }

 

原文链接:https://my.oschina.net/cimu/blog/5382401
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章