OCR+NLP 提取信息并分析,这个开源项目火了!

文字是传递信息的高效途径,利用 OCR 技术提取文本信息是各行业向数字智能化转型的第一步。

与此同时,针对 OCR 提取的海量文本信息,利用 NLP 技术进一步加工提取、分析理解后才能最大化发挥文本信息的价值。NLP 技术可以提升 OCR 准确率,并从文本中抽取关键信息、构建知识图谱,搭建检索、推荐、问答系统等。

 

 

虽然各行业智能化产业升级已经在如火如荼的开展中,但是在实际应用落地中却遇到诸多困难,比如:数据样本不够、模型精度不高、预测时延大等。为此,百度飞桨针对真实、高频的产业场景,提供了从数据准备、模型训练优化,到模型部署全流程的案例教程。

 

听说文档和代码已经开源了,来吧⬇️

https://github.com/PaddlePaddle/awesome-DeepLearning

 

 

01

OCR+NLP串联技术难点

市面上有不少开源的 OCR、NLP 产品,但是如果想直接利用这些工具,会面临底层框架不统一、串联难度高、效果无法保证等问题。PaddleOCR 和 PaddleNLP 是面向产业界的开发库,均基于飞桨开源框架最新版本,能够将 OCR 和 NLP 技术无缝结合。

 

今天我们针对金融行业研报、物流快递单,来看看 OCR + NLP 信息抽取技术的应用。

 

 

02

OCR+NLP 金融研报分析

当前,诸多投资机构都通过研报的形式给出对于股票、基金以及行业的判断,让大众了解热点方向、龙头公司等各类信息。然而,分析和学习研报往往花费大量时间,研报数量的与日俱增也使得研报智能分析诉求不断提高。这里我们采用命名实体识别技术,自动抽取研报中的关键信息,例如,“中国银行成立于1912年。”中包含了组织机构、场景事件、时间等实体信息。

 

 

OCR+NLP Pipeline

 

针对研报数据的命名实体识别与词频统计整体流程如上图所示。首先将研报 pdf 数据使用 fitz 包拆分为图像格式,然后利用 PaddleOCR 套件在研报数据集上微调 PP-OCR[1]的检测模型,使用现有的识别模型获得文本信息。PP-OCR 是 PaddleOCR 中由百度自研的明星模型系列,由文本检测、文本方向分类器与文本识别模块串联而成。

 

PP-OCR Pipeline

 

对 OCR 识别出的文本进行整理后,调用 PaddleNLP 中的 Taskflow API 抽取文本信息中的组织机构实体。最后对这些实体进行词频统计,就可初步判定当前研报分析的热点机构。

 

Taskflow 使用示意图

 

目前,Taskflow API 支持自然语言理解(NLU)和生成(NLG)两大场景共八大任务,包括中文分词、词性标注、命名实体识别、句法分析、文本纠错、情感分析、生成式问答和智能写诗,均可一键调用。

 

 

03

物流快递单信息抽取

双十一要到了,想必很多人都预备了一个满满的购物车。去年双十一成交量4982亿元,全国快递企业共处理快件39亿件,这背后则是物流行业工作量的骤增。除了满负荷的长深高速公路,还有繁忙的快递小哥。无论是企业业务汇总,还是寄件信息填写,都少不了关键信息智能提取这一环节,这其中均采用了命名实体识别技术。

 

 

命名实体识别大体上有三种方案:字符串匹配、统计语言模型、序列标注。前两种方法需要预先构建词典、穷举所有实体,无法发现新词、变体等。本案例中采用了目前的主流方法——序列标注。

 

数据集包括1600条训练集,200条训练集和200条测试集,采用 BIO 体系进行标注。

 

  实体定义和数据集标注示例

 

 

针对轻量化、高精度的需求,可以选用 RNN+CRF 方案。也可以采用预训练模型,通过模型压缩、动转静加速等方式满足精度和性能的要求。我们采用 Ernie-Gram[2] + CRF 获得了最佳效果。

 

 

此外,命名实体识别技术可以应用于各类关键信息的提取,例如电商评论中的商品名称、电子发票中的抬头信息、收入证明中的金额、法律文书中的犯罪地点等信息。结合关系抽取、事件抽取技术,还可以构建知识图谱、搭建问答系统等。

 

🔹PaddleOCR 项目地址:

https://github.com/PaddlePaddle/PaddleOCR

🔹PaddleNLP 项目地址:

https://github.com/PaddlePaddle/PaddleNLP

 

参考文献

[1] PP-OCR: A Practical Ultra Lightweight OCR System

(https://arxiv.org/pdf/2009.09941.pdf)

[2] ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding

(https://arxiv.org/pdf/2010.12148.pdf)

点击进入获得更多技术信息~~

优秀的个人博客,低调大师

微信关注我们

原文链接:https://my.oschina.net/u/4299156/blog/5292912

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

相关文章

发表评论

资源下载

更多资源
优质分享Android(本站安卓app)

优质分享Android(本站安卓app)

近一个月的开发和优化,本站点的第一个app全新上线。该app采用极致压缩,本体才4.36MB。系统里面做了大量数据访问、缓存优化。方便用户在手机上查看文章。后续会推出HarmonyOS的适配版本。

Mario,低调大师唯一一个Java游戏作品

Mario,低调大师唯一一个Java游戏作品

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

Apache Tomcat7、8、9(Java Web服务器)

Apache Tomcat7、8、9(Java Web服务器)

Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache、Sun 和其他一些公司及个人共同开发而成。因为Tomcat 技术先进、性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器。

Eclipse(集成开发环境)

Eclipse(集成开发环境)

Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。