顶会VLDB'22论文解读:多元时序预测算法METRO
摘要:本文提出了一个端到端的MTS预测框架METRO。METRO的核心思想是利用多尺度动态图建模变量之间的依赖关系,考虑单尺度内信息传递和尺度间信息融合。 本文分享自华为云社区《VLDB'22 METRO论文解读》,作者:云数据库创新Lab 。 0 导读 本文(METRO: A Generic Graph Neural Network Framework for Multivariate Time Series Forecasting)是由华为云数据库创新Lab联合电子科技大学数据与智能实验室发表在顶会VLDB‘22的文章,该文章提出了一种的多元时序预测算法METRO。VLDB是CCF推荐的A类国际学术会议,是数据库领域顶级学术会议之一。该论文是云数据库创新LAB在时序分析层面取得的关键技术成果之一。 METRO是基于自注意力机制(self-attention)的深度学习算法。该算法能有效学习历史数据的多种周期性以及提取不同时间线的相关性,为时序预测任务提供更准确的结果,使时序数据库具有强大的分析能力。目前METRO已经作为GaussDB for Influx的时序预测算子在华为云上线...



