每日一博 | 使用 PyTorch 进行矩阵分解进行动漫的推荐
我们一天会遇到很多次推荐——当我们决定在Netflix/Youtube上看什么,购物网站上的商品推荐,Spotify上的歌曲推荐,Instagram上的朋友推荐,LinkedIn上的工作推荐……列表还在继续!推荐系统的目的是预测用户对某一商品的“评价”或“偏好”。这些评级用于确定用户可能喜欢什么,并提出明智的建议。 推荐系统主要有两种类型: 基于内容的系统:这些系统试图根据项目的内容(类型、颜色等)和用户的个人资料(喜欢、不喜欢、人口统计信息等)来匹配用户。例如,Youtube可能会根据我是一个厨师的事实,以及/或者我过去看过很多烘焙视频来推荐我烹饪视频,从而利用它所拥有的关于视频内容和我个人资料的信息。 协同过滤:他们依赖于相似用户喜欢相似物品的假设。用户和/或项目之间的相似性度量用于提出建议。 本文讨论了一种非常流行的协同过滤技术——矩阵分解。 矩阵分解 推荐系统有两个实体-用户和物品(物品的范围十分广泛,可以是实际出售的产品,也可以是视频,文章等)。假设有m个用户和n个物品。我们推荐系统的目标是构建一个mxn矩阵(称为效用矩阵),它由每个用户-物品对的评级(或偏好)组成。最初,这...
