Go-Zero 是如何追踪你的请求链路?
“ go-zero 是一个集成了各种工程实践的 web 和 rpc 框架。通过弹性设计保障了大并发服务端的稳定性,经受了充分的实战检验。”
序言
微服务架构中,调用链可能很漫长,从 http
到 rpc
,又从 rpc
到 http
。而开发者想了解每个环节的调用情况及性能,最佳方案就是 全链路跟踪。
追踪的方法就是在一个请求开始时生成一个自己的 spanID
,随着整个请求链路传下去。我们则通过这个 spanID
查看整个链路的情况和性能问题。
下面来看看 go-zero
的链路实现。
代码结构
spancontext:保存链路的上下文信息「traceid,spanid,或者是其他想要传递的内容」
span:链路中的一个操作,存储时间和某些信息
propagator:
trace
传播下游的操作「抽取,注入」noop:实现了空的
tracer
实现
概念
SpanContext
在介绍 span
之前,先引入 context
。SpanContext 保存了分布式追踪的上下文信息,包括 Trace id,Span id 以及其它需要传递到下游的内容。OpenTracing 的实现需要将 SpanContext 通过某种协议 进行传递,以将不同进程中的 Span 关联到同一个 Trace 上。对于 HTTP 请求来说,SpanContext 一般是采用 HTTP header 进行传递的。
下面是 go-zero
默认实现的 spanContext
type spanContext struct {
traceId string // TraceID 表示tracer的全局唯一ID
spanId string // SpanId 表示单个trace中某一个span的唯一ID,在trace中唯一
}
同时开发者也可以实现 SpanContext
提供的接口方法,实现自己的上下文信息传递:
type SpanContext interface {
TraceId() string // get TraceId
SpanId() string // get SpanId
Visit(fn func(key, val string) bool) // 自定义操作TraceId,SpanId
}
Span
一个 REST 调用或者数据库操作等,都可以作为一个 span
。 span
是分布式追踪的最小跟踪单位,一个 Trace 由多段 Span 组成。追踪信息包含如下信息:
type Span struct {
ctx spanContext // 传递的上下文
serviceName string // 服务名
operationName string // 操作
startTime time.Time // 开始时间戳
flag string // 标记开启trace是 server 还是 client
children int // 本 span fork出来的 childsnums
}
从 span
的定义结构来看:在微服务中, 这就是一个完整的子调用过程,有调用开始 startTime
,有标记自己唯一属性的上下文结构 spanContext
以及 fork 的子节点数。
实例应用
在 go-zero
中 http,rpc 中已经作为内置中间件集成。我们以 http,rpc 中,看看 tracing
是怎么使用的:
HTTP
func TracingHandler(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
// **1**
carrier, err := trace.Extract(trace.HttpFormat, r.Header)
// ErrInvalidCarrier means no trace id was set in http header
if err != nil && err != trace.ErrInvalidCarrier {
logx.Error(err)
}
// **2**
ctx, span := trace.StartServerSpan(r.Context(), carrier, sysx.Hostname(), r.RequestURI)
defer span.Finish()
// **5**
r = r.WithContext(ctx)
next.ServeHTTP(w, r)
})
}
func StartServerSpan(ctx context.Context, carrier Carrier, serviceName, operationName string) (
context.Context, tracespec.Trace) {
span := newServerSpan(carrier, serviceName, operationName)
// **4**
return context.WithValue(ctx, tracespec.TracingKey, span), span
}
func newServerSpan(carrier Carrier, serviceName, operationName string) tracespec.Trace {
// **3**
traceId := stringx.TakeWithPriority(func() string {
if carrier != nil {
return carrier.Get(traceIdKey)
}
return ""
}, func() string {
return stringx.RandId()
})
spanId := stringx.TakeWithPriority(func() string {
if carrier != nil {
return carrier.Get(spanIdKey)
}
return ""
}, func() string {
return initSpanId
})
return &Span{
ctx: spanContext{
traceId: traceId,
spanId: spanId,
},
serviceName: serviceName,
operationName: operationName,
startTime: timex.Time(),
// 标记为server
flag: serverFlag,
}
}
将 header -> carrier,获取 header 中的 traceId 等信息
开启一个新的 span,并把「traceId,spanId」封装在 context 中
从上述的 carrier「也就是 header」获取 traceId,spanId
看 header 中是否设置
如果没有设置,则随机生成返回
从
request
中产生新的 ctx,并将相应的信息封装在 ctx 中,返回从上述的 context,拷贝一份到当前的
request
这样就实现了 span
的信息随着 request
传递到下游服务。
RPC
在 rpc 中存在 client, server
,所以从 tracing
上也有 clientTracing, serverTracing
。 serveTracing
的逻辑基本与 http 的一致,来看看 clientTracing
是怎么使用的?
func TracingInterceptor(ctx context.Context, method string, req, reply interface{},
cc *grpc.ClientConn, invoker grpc.UnaryInvoker, opts ...grpc.CallOption) error {
// open clientSpan
ctx, span := trace.StartClientSpan(ctx, cc.Target(), method)
defer span.Finish()
var pairs []string
span.Visit(func(key, val string) bool {
pairs = append(pairs, key, val)
return true
})
// **3** 将 pair 中的data以map的形式加入 ctx
ctx = metadata.AppendToOutgoingContext(ctx, pairs...)
return invoker(ctx, method, req, reply, cc, opts...)
}
func StartClientSpan(ctx context.Context, serviceName, operationName string) (context.Context, tracespec.Trace) {
// **1**
if span, ok := ctx.Value(tracespec.TracingKey).(*Span); ok {
// **2**
return span.Fork(ctx, serviceName, operationName)
}
return ctx, emptyNoopSpan
}
获取上游带下来的 span 上下文信息
从获取的 span 中创建新的 ctx,span「继承父 span 的 traceId」
将生成 span 的 data 加入 ctx,传递到下一个中间件,流至下游
总结
go-zero
通过拦截请求获取链路 traceID,然后在中间件函数入口会分配一个根 Span,然后在后续操作中会分裂出子 Span,每个 span 都有自己的具体的标识,Finsh 之后就会汇集在链路追踪系统中。开发者可以通过 ELK
工具追踪 traceID
,看到整个调用链。
同时 go-zero
并没有提供整套 trace
链路方案,开发者可以封装 go-zero
已有的 span
结构,做自己的上报系统,接入 jaeger, zipkin
等链路追踪工具。
参考
go-zero trace
开放分布式追踪(OpenTracing)入门与 Jaeger 实现
同时欢迎大家使用 go-zero
并加入我们,https://github.com/tal-tech/go-zero
本文分享自微信公众号 - GoCN(golangchina)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
如何利用设计模式改善业务代码?
在业务部门的开发中,大多数的我们在完成的业务的各种需求和提供解决方案,很多场景下的我们通过 CRUD 就能解决问题,但是这样的工作对技术人的提升并不多,如何让自己从业务中解脱出来找到写代码的乐趣呢,我做过一些尝试,使用设计模式改善自己的业务代码就是其中的一种。让代码变得更加简洁和提升健壮性,从代码中寻找一些欢乐。 前言 阿里优秀的人很多,他们身上都有着共同的特质,就是看问题的思考能力,让我最佩服的是思考力强的人,对事情有深入见解和观点的人,大多数人还是停留在表面看问题,很多禁锢在思想里逃不出来,古人说,立德立言立功为三不朽,立言就是思考力和认知力,人和人的差异,在长久的职场中或者生活中,除去运气外,其实就是认知和思考力的差异。所以除去繁琐的工作后,如何在有限的时间从代码中寻找欢乐,需要提高的是思考和规划能力。 责任链设计模式 ▐模式定义 责任链模式(Chain of Responsibility Pattern), 是行为型设计模式之一。这种模型结构有点类似现实生活中铁链,由一个个铁环首尾相接构成一条链,如果这种结构用在编程领域,则每个节点可以看做一个对象,每个对象有不同的处理逻辑,将...
- 下一篇
双 11 的狂欢,干了这碗「流量防控」汤
这是悟空的第67篇原创文章 作者 | 悟空聊架构 来源 |悟空聊架构(ID:PassJava666) 转载请联系授权(微信ID:PassJava) 临近双十一,从 2009 年第一届双十一开始,成交量只有 5000 万,到去年 2019 年,成交量达到了 2684 亿。今年迎来了第十二届双十一,想想都挺激动。 阿里人喜欢将双十一视为 Team Building(团队建设),广为流传的一句话:打仗是最好的团建,没有参加过双十一的叫同事,参加过双十一的叫战友。 上一篇我通过三国故事讲解了服务雪崩和熔断的机制,而且自己造了一个轮子:熔断器。而这一篇会讲解被一线大厂使用的两款流量防控组件:Sentinel 和 Hystrix,以及对它们的横向对比,以及该如何选型。 本篇主要内容如下: 本文已收录到我的Github:https://github.com/Jackson0714/PassJava-Learning 一、熔断&降级&限流&隔离 面对高并发的流量,我们通常会使用四种方式(熔断&降级&限流&隔离)来防止瞬时大流量对系统的冲击。而今天要介绍的...
相关文章
文章评论
共有0条评论来说两句吧...