每日一博 | CNN 中常用的四种卷积详解
卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。这期我们一起学习下深度学习中常见的卷积有哪些? 1. 一般卷积 卷积在数学上用通俗的话来说就是输入矩阵与卷积核(卷积核也是矩阵)进行对应元素相乘并求和,所以一次卷积的结果的输出是一个数,最后对整个输入输入矩阵进行遍历,最终得到一个结果矩阵,说白了就是一个卷积核在图像上滑动,并求取对应元素相乘求和的过程,如下图: 卷积核为3*3,步长为2和填充的2D卷积 首先,一般情况下卷积层的作用都是用来自动提取图像的一些视觉特征,代替传统的手动方法提取特征不精确,不全面等缺点。常见的一般卷积操作都包括以下四个参数: 卷积核大小(Kernel Size):卷积核定义了卷积的大小范围,在网络中代表感受野的大小,二维卷积核最常见的就是 3*3 的卷积核,也可以根据网络设计5*5或者7*7,甚至1*1等不同size的卷积核,来提取不同尺度的特征。在卷积神经网络中,一般情况下,卷积核越大,感受野(receptive field)越大,看到的图片信息越多,所获得的全局特征越好。虽说如此,但是大的卷积核会...
