揭秘Siri,苹果发布论文阐释语音助手设计想法
最近,苹果发布了一系列论文来阐释语音助手的重要工作机理,公开揭秘Siri,向业界贡献了自己在设计上的不同想法。 在第一篇论文中,苹果就语音助手中的多任务处理问题进行了阐释,它指出在Siri中,唤醒处理通常需要两个步骤:AI首先必须确定输入音频中的语音内容是否与触发短语的语音内容匹配(语音触发检测),然后必须确定说话者的语音是否与一个或多个注册用户的语音相匹配(说话者验证)。一般方法是将两项任务分别来处理,苹果则认为可以用一个神经网络模型同时解决两项任务,同时它表示,经过验证,该方法各方面性能可以达到预期。 在该论文中,研究人员给出了模型示例。他们在包含16000小时带注释样本的数据集中训练了基于两种思路下设计的模型,其中5000小时的音频带有语音标签,其余均只有扬声器标签。相比于一般训练模型去获取多个标签的思路,苹果通过将不同任务的训练数据进行级联来训练多个相关任务的模型。结果发现,在性能表现相同的情况下,苹果新提出的模型反而更适合应用,它能够在两个任务之间共享计算,大大节省了设备上的内存空间,同时计算时间或等待时间以及所消耗的电量/电池数量都将降低。 在另一篇论文中,苹果还介绍了多语...

