数据分析师?架构师?科学家?大数据时代的热门职业
沈阳市大数据局公开招聘110名智慧城市建设信息员,7月7日起至11日报名,引起社会广泛关注,报名网站点击率迅速蹿升。
大数据已是当下信息时代一个非常热的概念,大数据时代到来,将给人才发展带来哪些机会?谁将是未来最热门的人才?大数据时代的热门职业都有哪些?让我们一起来看看吧——
说起大数据,可能你还会觉得云里雾里,实际上,大数据就发生在你我身边,和小编一起先来点入门级的——
你的通话记录、上网记录,会留在三大电信运营商那里;
你的身份、家庭房产信息,会通过刷信用卡而被银行知晓;
你去了哪里,现在哪里,又会通过手机定位系统而泄露,百度、腾讯、阿里是目前大数据的主导拥有者和使用者;
政府也掌握相应的大数据。通过这些数据都勾勒出你的基本面貌,也就是说,你的一举一动尽在大数据掌控中。亲们,有木有觉得害怕?
大数据已深入到日常生活的诸多领域,在许多行业发挥着重要作用。
大数据到底有什么用?
大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。
举个例子——2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据时代,人们的思维方式不再是原有的因果关系,而是相关关系,它的核心是预测,并且不是基于随机样本,而是全体数据,利用计算机技术强大的处理和分析能力为人们提供决策。
大数据时代最需要什么样的人才?
●全球大数据人才荒
美国软件就业市场调查,Big Data(大数据)和 Cloud Computing(云计算)是目前市场上最迫切需要的人才。研究机构Gartner更预测,2015年全球将有440万个巨量资料相关之IT工作职缺,但目前尚未有真正以巨量资料为背景的学科,因此人才缺口恐达三分之二。
“埃森哲”开展的一项调查,研究了美国、中国、印度、英国、日本、巴西和新加坡对数据分析人才的需求发现,到2015年,除中国之外都面临胜任数据分析科学家的净短缺。中国因为需求不足似乎还出现了少量的过剩。
●赋予数字意义的能力
美国USNEWS预测2020年十大最佳职业,第一名即是与巨量数据有关的数据运算人员(数据科学家)。
为了要精算、推演出海量数据库得到结论,除了需要IT、统计背景的人才外,更需要产业专家赋予数字意义,一窥其中奥秘。专家表示,虽说大数据人才时代来临,但别忘了大数据人才市场里看中的是“赋予数字意义的能力”,算法、数学模型可以只学概念,但解读数据的本事却是无可取代的。
●政府和企业的高层管理者
专家提出,一提大数据时代,就认为我们最需要数据技术人才,比如计算机人才和数学工程人才,也是一种错觉。
我们确实很需要数据技术人才,但真正能够帮助政府和企业转变思维、应对大数据挑战的人才不是一个来自IT部门的技术专家,而是政府和企业的高层管理者。对目前的中国来说,对大数据管理人才需求的迫切性要超越对技术人才需求的迫切性。政府和企业的领导者,也要学习用数据思考、说话和管理。
大数据时代的热门职业
下面小编为您介绍大数据时代下的热门职业。不仅具有高收入的特点,也有令人羡慕的时代属性,而且随着大数据的发展,未来会有更多的热门职业涌现。
●数据规划师
在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。
●数据工程师
大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。
●数据架构师
擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。
●数据分析师
职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。
●数据应用师
将数据还原到产品中,为产品所用。他们能够用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。
●数据科学家
大数据中的领导者,具备多种交叉科学和商业技能,能够将数据和技术转化为企业的商业价值。
看完了以上的内容,如果你也想成为炙手可热的大数据人才,现在就开始努力吧!
本文作者:佚名
来源:51CTO
关注公众号
低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
-
上一篇
Character-Aware Neural Language Models
本篇分享的文章是Character-Aware Neural Language Models,作者是Yoon Kim、Alexander M. Rush。两位是HarvardNLP组的学生和老师,前者贡献了一些有意义的torch代码,比如seq2seq+attn,后者第一次将seq2seq的模型应用到了文本摘要。 卷积神经网络之前常常用在计算机视觉领域,用来在图像中寻找features,前几年被研究者应用到了nlp任务中,在文本分类等任务中取得了不错的效果。传统的word embedding对低频词并没有太好的效果,而本文将char embedding作为CNN的输入,用CNN的输出经过一层highway层处理表示word embedding,然后作为RNNLM的输入,避免了这个问题。而且之前的神经网络语言模型中绝大多数需要优化的参数是word embedding,而本文的模型则会将优化参数减少非常多。 本文模型的架构图如下: 可以分为三层,一层是charCNN,通过构建一个char embedding矩阵,将word表示成matrix,和图像类似,输入到CNN模型中提取经过filte...
-
下一篇
高可用性系统在大众点评的实践与经验
可用性的理解 理解目标 业界高可用的目标是几个9,对于每一个系统,要求是不一样的。研发人员对所设计或者开发的系统,要知道用户规模及使用场景,知道可用性的目标。 比如,5个9的目标对应的是全年故障5分钟。 拆解目标 几个9的目标比较抽象,需要对目标进行合理的分解,可以分解成如下两个子目标。 频率要低:减少出故障的次数 不出问题,一定是高可用的,但这是不可能的。系统越大、越复杂,只能尽量避免问题,通过系统设计、流程机制来减少出问题的概率。但如果经常出问题,后面恢复再快也是没有用的。 时间要快:缩短故障的恢复时间 故障出现时,不是解决或者定位到具体问题,而是快速恢复是第一要务的,防止次生灾害,问题扩大。这里就要求要站在业务角度思考,而不仅是技术角度思考。 下面,我们就按这两个子目标来分别阐述。 频率要低:减少出故障的次数 设计:根据业务变化不断进行迭代 以点评交易系统的演进过程为例。 幼儿时期:2012年前 使命:满足业务要求,快速上线。 因为2011年要快速地把团购产品推向市场,临时从各个团队抽取的人才,大部分对.NET更熟悉,所以使用.NET进行了第一代的团购系统设计。毕 竟满足业务要求...
相关文章
文章评论
共有0条评论来说两句吧...








微信收款码
支付宝收款码