阿里云E-MapReduce Pig 作业配置
E-MapReduce 中,用户申请集群的时候,默认为用户提供了 Pig 环境,用户可以直接使用 Pig 来创建和操作自己的表和数据。操作步骤如下。 1.用户需要提前准备好 Pig 的脚本,例如: /* Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at* http://www.apache.org/licenses/LICENSE-2.0* Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.*/ -- Query Phrase Popularity (Hadoop cluster) -- This script processes a search query log file from the Excite search engine and finds search phrases that occur with particular high frequency during certain times of the day. -- Register the tutorial JAR file so that the included UDFs can be called in the script. REGISTER oss://emr/checklist/jars/chengtao/pig/tutorial.jar; -- Use the PigStorage function to load the excite log file into the “raw” bag as an array of records. -- Input: (user,time,query) raw = LOAD 'oss://emr/checklist/data/chengtao/pig/excite.log.bz2' USING PigStorage('t') AS (user, time, query); -- Call the NonURLDetector UDF to remove records if the query field is empty or a URL. clean1 = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query); -- Call the ToLower UDF to change the query field to lowercase. clean2 = FOREACH clean1 GENERATE user, time, org.apache.pig.tutorial.ToLower(query) as query; -- Because the log file only contains queries for a single day, we are only interested in the hour. -- The excite query log timestamp format is YYMMDDHHMMSS. -- Call the ExtractHour UDF to extract the hour (HH) from the time field. houred = FOREACH clean2 GENERATE user, org.apache.pig.tutorial.ExtractHour(time) as hour, query; -- Call the NGramGenerator UDF to compose the n-grams of the query. ngramed1 = FOREACH houred GENERATE user, hour, flatten(org.apache.pig.tutorial.NGramGenerator(query)) as ngram; -- Use the DISTINCT command to get the unique n-grams for all records. ngramed2 = DISTINCT ngramed1; -- Use the GROUP command to group records by n-gram and hour. hour_frequency1 = GROUP ngramed2 BY (ngram, hour); -- Use the COUNT function to get the count (occurrences) of each n-gram. hour_frequency2 = FOREACH hour_frequency1 GENERATE flatten($0), COUNT($1) as count; -- Use the GROUP command to group records by n-gram only. -- Each group now corresponds to a distinct n-gram and has the count for each hour. uniq_frequency1 = GROUP hour_frequency2 BY group::ngram; -- For each group, identify the hour in which this n-gram is used with a particularly high frequency. -- Call the ScoreGenerator UDF to calculate a "popularity" score for the n-gram. uniq_frequency2 = FOREACH uniq_frequency1 GENERATE flatten($0), flatten(org.apache.pig.tutorial.ScoreGenerator($1)); -- Use the FOREACH-GENERATE command to assign names to the fields. uniq_frequency3 = FOREACH uniq_frequency2 GENERATE $1 as hour, $0 as ngram, $2 as score, $3 as count, $4 as mean; -- Use the FILTER command to move all records with a score less than or equal to 2.0. filtered_uniq_frequency = FILTER uniq_frequency3 BY score > 2.0; -- Use the ORDER command to sort the remaining records by hour and score. ordered_uniq_frequency = ORDER filtered_uniq_frequency BY hour, score; -- Use the PigStorage function to store the results. -- Output: (hour, n-gram, score, count, average_counts_among_all_hours) STORE ordered_uniq_frequency INTO 'oss://emr/checklist/data/chengtao/pig/script1-hadoop-results' USING PigStorage(); 2.将该脚本保存到一个脚本文件中,例如叫 script1-hadoop-oss.pig,然后将该脚本上传到 OSS 的某个目录中(例如:oss://path/to/script1-hadoop-oss.pig)。 3.进入阿里云 E-MapReduce 控制台作业列表。 4.单击该页右上角的创建作业,进入创建作业页面。 5.填写作业名称。 6.选择 Pig 作业类型,表示创建的作业是一个 Pig 作业。这种类型的作业,其后台实际上是通过以下的方式提交。 `pig [user provided parameters]` 7.在应用参数选项框中填入 Pig 命令后续的参数。例如,如果需要使用刚刚上传到 OSS 的 Pig 脚本,则填写如下: `-x mapreduce ossref://emr/checklist/jars/chengtao/pig/script1-hadoop-oss.pig` 您也可以单击选择 OSS 路径,从 OSS 中进行浏览和选择,系统会自动补齐 OSS 上 Pig 脚本的绝对路径。请务必将 Pig 脚本的前缀修改为 ossref(单击切换资源类型),以保证 E-MapReduce 可以正确下载该文件。 8.选择执行失败后策略。