您现在的位置是:首页 > 文章详情

如何用自动机器学习实现神经网络进化

日期:2017-07-31点击:610

雷锋网按:本文由图普科技编译自《Design by Evolution: How to evolve your neural network with AutoML》,雷锋网(公众号:雷锋网)独家首发。

对大多数从事机器学习工作的人来说,设计一个神经网络无异于制作一项艺术作品。神经网络通常始于一个常见的架构,然后我们需要对参数不断地进行调整和优化,直到找到一个好的组合层、激活函数、正则化器和优化参数。在一些知名的神经网络架构,如VGG、Inception、ResNets、DenseNets等的指导下,我们需要对网络的变量进行重复的操作,直到网络达到我们期望的速度与准确度。随着网络处理能力的不断提高,将网络优化处理程序自动化变得越来越可行。

在像Random Forests和SVMs这样的浅模型中,我们已经能够使超参数优化的操作自动

原文链接:https://yq.aliyun.com/articles/177503
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章