您现在的位置是:首页 > 文章详情

基于结构化平均感知机的分词器Java实现

日期:2019-01-13点击:389

基于结构化平均感知机的分词器Java实现


最近高产似母猪,写了个基于AP的中文分词器,在Bakeoff-05的MSR语料上F值有96.11%。最重要的是,只训练了5个迭代;包含语料加载等IO操作在内,整个训练一共才花费23秒。应用裁剪算法去掉模型中80%的特征后,F值才下降不到0.1个百分点,体积控制在11兆。如果训练一百个迭代,F值可达到96.31%,训练时间两分多钟。

数据在一台普通的IBM兼容机上得到:

 

c1e9b2701361995c78794398e3ac2c7b5bd91b78

本模块已集成到HanLP 1.6以上版本开源,文档位于项目wiki中,欢迎使用!【hanlp1.7新版本已经发布,可以去新版本查到看使用

结构化预测

关于结构化预测和非结构化预测的区别一张讲义说明如下:

 

81724db2e906721bd2ba3fa3d36e4cc7c1de6c6c

更多知识请参考Neubig的讲义《The Structured Perceptron》。

 

本文实现的AP分词器预测是整个句子的BMES标注序列,当然属于结构化预测问题了。

感知机

二分类

感知机的基础形式如《统计学习方法》所述,是定义在一个超平面上的线性二分类模型。作为原著第二章,实在是简单得不能再简单了。然而实际运用中,越简单的模型往往生命力越顽强。

这里唯一需要补充的是,感知机是个在线学习模型,学习一个训练实例后,就可以更新整个模型。

多分类

怎么把二分类拓展到多分类呢?可以用多个分类器,对于BMES这4种分类,就是4个感知机了。每个感知机分别负责分辨“是不是B”“是不是M”“是不是E”“是不是S”这4个二分类问题。在实现中,当然不必傻乎乎地创建4个感知机啦。把它们的权值向量拼接在一起,就可以输出“是B的分数”“是M的分数”“是E的分数”“是S的分数”了。取其最大者,就可以初步实现多分类。但在分词中,还涉及到转移特征和HMM-viterbi搜索算法等,留到下文再说。

平均感知机

平均感知机指的是记录每个特征权值的累计值,最后平均得出最终模型的感知机。为什么要大费周章搞个平均算法出来呢?

前面提到过,感知机是个在线学习模型,学习一个训练实例后,就可以更新整个模型。假设有10000个实例,模型在前9999个实例的学习中都完美地得到正确答案,说明此时的模型接近完美了。可是最后一个实例是个噪音点,朴素感知机模型预测错误后直接修改了模型,导致前面9999个实例预测错误,模型训练前功尽弃。

有什么解决方案呢?一种方案是投票式的,即记录每个模型分类正确的次数,作为它的得票。训练结束时取得票最高的模型作为最终模型。但这种算法是不实际的,如果训练5个迭代,10000个实例,那么就需要储存50000个模型及其票数,太浪费了。

 

最好用的方法是平均感知机,将这50000个模型的权值向量累加起来,最后除以50000就行了,这样任何时候我们只额外记录了一个累加值,非常高效了。关于平均感知机的详情请参考《200行Python代码实现感知机词性标注器》。虽然那篇文章是讲解词性标注的,但相信作为万物灵长的读者一定拥有举一反三的泛化能力。

语言模型

HMM

我们不是在讲解感知机分词吗?怎么跟HMM扯上关系了?

其实任何基于序列标注的分词器都离不开隐马尔科夫链,即BMES这四个标签之间的Bigram(乃至更高阶的n-gram)转移概率。作为其中一员的AP分词器,也不例外地将前一个字符的标签作为了一个特征。该特征对预测当前的标签毫无疑问是有用的,比如前一个标签是B,当前标签就绝不可能是S。

这种类似于y[i-1]的特征在线性图模型中一般称为转移特征,而那些不涉及y[i-1]的特征通常称为状态特征。

viterbi

由于AP分词器用到了转移特征,所以肯定少不了维特比搜索。从序列全体的准确率考虑,搜索也是必不可少的。给定隐马尔可夫模型的3要素,我用Java写了一段“可运行的伪码”:

5a12a2af802a9b001e64c7da2884317c3ef1116da9997a32cbbfe902a512a056d78a74f0bf3f0242 

 


上述实现是个重视条理胜于效率的原型,古人云“过早优化是魔鬼”。相信聪明的读者一定能看懂这里面在干什么。

特征提取

定义字符序列为x,标注序列为y。

转移特征

转移特征就是上面说的y[i-1]。

状态特征

我一共使用了7种状态特征:

 

5e5906aa26c4e3975b16852d7a9e4c0fe74afced

在邓知龙的《基于感知器算法的高效中文分词与词性标注系统设计与实现》中提到,要利用更复杂的字符n-gram、字符类别n-gram、叠字、词典等特征。但在我的实践中,除了上述7种特征外,我每减少一个特征,我的AP分词器的准确率就提高一点,也许是语料不同吧,也许是特征提取的实现不同。总之,主打精简、高效。

训练

迭代数目其实不需要太多,在3个迭代内模型基本就收敛了:

 

56a7989ce47c5d667ffd50f8a1039646ed41a9ea

4个迭代似乎帮了倒忙,但万幸的是,我们使用的是平均感知机。权值平均之后,模型的性能反而有所提升。

此时模型大小:

 3b8ddfdddd943ca6a7573ed52be4db11fd2746fa

模型裁剪

《基于感知器算法的高效中文分词与词性标注系统设计与实现》提到的模型裁剪策略是有效的,我将压缩率设为0.2,即压缩掉20%的特征,模型准确率没有变化:

 

03c8213c9edbb021e20d955b2841a1c06212195a

由于我使用了随机shuffle算法,所以每次训练准确率都略有微小的上下波动。此时可以看到模型裁剪过程花了额外的1分钟,裁剪完毕后准确率维持96.11不变。

此时模型大小:

 

15848e6434b7a5295bf1820c08d135359aba4c57

裁减掉50%如何呢?

abea5b60732c365ec5df6621ed1034bdfaf29cd1 


此时模型大小:

1c043cf76b339fbef6addad64e6a40509619c77f 


可见裁剪了80%的特征,体积从54M下降到11M,模型的准确率才跌了不到0.1个百分点!这说明大部分特征都是没用的,特征裁剪非常有用、非常好用!

Reference

邓知龙 《基于感知器算法的高效中文分词与词性标注系统设计与实现》

原文链接:https://yq.aliyun.com/articles/686736
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章