数据提取之JSON与JsonPATH
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。
JSON和XML的比较可谓不相上下。
Python 2.7中自带了JSON模块,直接import json就可以使用了。
官方文档:http://docs.python.org/library/json.html
Json在线解析网站:http://www.json.cn/#
JSON
json简单说就是javascript中的对象和数组,所以这两种结构就是对象和数组两种结构,通过这两种结构可以表示各种复杂的结构:
- 对象:对象在js中表示为{ }括起来的内容,数据结构为 { key:value, key:value, ... }的键值对的结构,在面向对象的语言中,key为对象的属性,value为对应的属性值,所以很容易理解,取值方法为 对象.key 获取属性值,这个属性值的类型可以是数字、字符串、数组、对象这几种。
- 数组:数组在js中是中括号[ ]括起来的内容,数据结构为 ["Python", "javascript", "C++", ...],取值方式和所有语言中一样,使用索引获取,字段值的类型可以是 数字、字符串、数组、对象几种。
import json
json模块提供了四个功能:dumps、dump、loads、load,用于字符串 和 python数据类型间进行转换。
1. json.loads()
把Json格式字符串解码转换成Python对象 从json到python的类型转化对照如下:
# json_loads.py import json strList = '[1, 2, 3, 4]' strDict = '{"city": "北京", "name": "大猫"}' json.loads(strList) # [1, 2, 3, 4] json.loads(strDict) # json数据自动按Unicode存储 # {u'city': u'\u5317\u4eac', u'name': u'\u5927\u732b'}
2. json.dumps()
实现python类型转化为json字符串,返回一个str对象 把一个Python对象编码转换成Json字符串
从python原始类型向json类型的转化对照如下:
# json_dumps.py import json import chardet listStr = [1, 2, 3, 4] tupleStr = (1, 2, 3, 4) dictStr = {"city": "北京", "name": "大猫"} json.dumps(listStr) # '[1, 2, 3, 4]' json.dumps(tupleStr) # '[1, 2, 3, 4]' # 注意:json.dumps() 处理中文时默认使用的ascii编码,会导致中文无法正常显示 print json.dumps(dictStr) # {"city": "\u5317\u4eac", "name": "\u5927\u732b"} # 记住:处理中文时,添加参数 ensure_ascii=False 来禁用ascii编码 print json.dumps(dictStr, ensure_ascii=False) # {"city": "北京", "name": "大刘"}
3. json.dump()
将Python内置类型序列化为json对象后写入文件
# json_dump.py import json listStr = [{"city": "北京"}, {"name": "大刘"}] json.dump(listStr, open("listStr.json","w"), ensure_ascii=False) dictStr = {"city": "北京", "name": "大刘"} json.dump(dictStr, open("dictStr.json","w"), ensure_ascii=False)
4. json.load()
读取文件中json形式的字符串元素 转化成python类型
# json_load.py import json strList = json.load(open("listStr.json")) print strList # [{u'city': u'\u5317\u4eac'}, {u'name': u'\u5927\u5218'}] strDict = json.load(open("dictStr.json")) print strDict # {u'city': u'\u5317\u4eac', u'name': u'\u5927\u5218'}
JsonPath
JsonPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python, PHP 和 Java。
JsonPath 对于 JSON 来说,相当于 XPath 对于 XML。
- 安装方法:pip install jsonpath
- 官方文档:http://goessner.net/articles/JsonPath
JsonPath与XPath语法对比:
Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。
示例:
我们以拉勾网城市JSON文件 http://www.lagou.com/lbs/getAllCitySearchLabels.json 为例,获取所有城市。
# jsonpath_lagou.py import urllib2 import jsonpath import json url = 'http://www.lagou.com/lbs/getAllCitySearchLabels.json' request =urllib2.Request(url) response = urllib2.urlopen(request) html = response.read() # 把json格式字符串转换成python对象 jsonobj = json.loads(html) # 从根节点开始,匹配name节点 citylist = jsonpath.jsonpath(jsonobj,'$..name') print citylist print type(citylist) fp = open('city.json','w') content = json.dumps(citylist, ensure_ascii=False) print content fp.write(content.encode('utf-8')) fp.close()
注意事项:
json.loads() 是把 Json格式字符串解码转换成Python对象,如果在json.loads的时候出错,要注意被解码的Json字符的编码,如果传入的字符串的编码不是UTF-8的话,需要指定字符编码的参数encoding
如:
dataDict = json.loads(jsonStrGBK);
jsonStrGBK是JSON字符串,假设其编码本身是非UTF-8的话而是GBK 的,那么上述代码会导致出错,改为对应的:
dataDict = json.loads(jsonStrGBK, encoding="GBK");
附:字符串编码转换
这是中国程序员最苦逼的地方,什么乱码之类的几乎都是由汉字引起的。 其实编码问题很好搞定,只要记住一点:
任何平台的任何编码 都能和 Unicode 互相转换
UTF-8 与 GBK 互相转换,那就先把UTF-8转换成Unicode,再从Unicode转换成GBK,反之同理。
# 这是一个 UTF-8 编码的字符串 utf8Str = "你好地球" # 1. 将 UTF-8 编码的字符串 转换成 Unicode 编码 unicodeStr = utf8Str.decode("UTF-8") # 2. 再将 Unicode 编码格式字符串 转换成 GBK 编码 gbkData = unicodeStr.encode("GBK") # 1. 再将 GBK 编码格式字符串 转化成 Unicode unicodeStr = gbkData.decode("gbk") # 2. 再将 Unicode 编码格式字符串转换成 UTF-8 utf8Str = unicodeStr.encode("UTF-8")
decode的作用是将其他编码的字符串转换成 Unicode 编码
encode的作用是将 Unicode 编码转换成其他编码的字符串
一句话:UTF-8是对Unicode字符集进行编码的一种编码方式
本文最终解释权归本文作者所有,未经允许不得私自转载

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
Pulsar 集群安装
0x1 摘要 本文记录Pulsar 2.2.0版本安装步骤,单机模式(standalone)比较简单,直接参考官网:http://pulsar.apache.org/docs/en/standalone/按步骤执行就行,主要讲解集群模式安装,以及过程中遇到问题的解决。 0x2 环境要求 Linux Java 8 及以上 3 台ZooKeeper集群 0x3 安装顺序 安装ZooKeeper集群 初始化集群元数据信息 安装BookKeeper集群 安装Pulsar brokers 下面针对每一步进行详细介绍。 0x4 安装ZooKeeper集群 由于我本地环境已经有安装好的ZK集群,可以直接使用,此步省略。 0x5 初始化集群元数据信息 初始化元数据信息非常简单,只需一条命令就可以,具体参数的意义看官网更好理解: bin/pulsar initialize-cluster-metadata \ --cluster pulsar-cluster-1 \ --zookeeper zk1.us-west.example.com:2181 \ --configuration-store zk1....
- 下一篇
星云精准测试之用例魔方
精准测试从某个层面来讲,是赋予了测试用例真正的生命力,传统的测试用例仅仅是一些只能够依赖人去理解和分析的文本文件而已,在计算机和算法层面则没有存在意义和价值。下图是精准测试的整体架构图: 大家首先可能会比较好奇,“用例魔方”的概念是怎么来的?测试用例魔方是在精准测试的设计、开发和商业实践中自然产生的功能集合的一个统称。当我们把精准测试的和用例分析相关的功能画成架构图形表示的时候,它自然而然地看起来就像魔方,所谓“魔”则是精准测试核心算法所赋予的超能力。上图是星云精准测试系统的总体结构图,“测试魔方”即分布在左上角区域。大家知道精准测试的核心技术是测试用例与代码的追溯关系的建立,而在此之上就可以构建测试魔方的核心功能区。如下: 所谓“方”实际上是代表测试用例的集合,每个测试用例用一个小方块标识,所有测试用例的集合用一个大方块。现在来看在精准测试架构下,“用例魔方”所能够提供的功能(对精准测试的底层技术不是很了解的话,可以预先温习下《精准测试框架白皮书》)。精准测试体系中,测试用例对应的代码逻辑都可以实现全自动的追溯和存储,因此测试用例就具备了进行深入分析的基础。在精准测试的用例魔方中...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2全家桶,快速入门学习开发网站教程
- Docker安装Oracle12C,快速搭建Oracle学习环境
- SpringBoot2整合MyBatis,连接MySql数据库做增删改查操作
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- MySQL8.0.19开启GTID主从同步CentOS8
- CentOS8,CentOS7,CentOS6编译安装Redis5.0.7
- CentOS7编译安装Cmake3.16.3,解决mysql等软件编译问题
- Springboot2将连接池hikari替换为druid,体验最强大的数据库连接池
- 设置Eclipse缩进为4个空格,增强代码规范
- CentOS7,CentOS8安装Elasticsearch6.8.6