首页 文章 精选 留言 我的
优秀的个人博客,低调大师

微信关注我们

原文链接:https://yq.aliyun.com/articles/667324

转载内容版权归作者及来源网站所有!

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

Kaggle如何取得top 2%,这篇文章告诉你!

在数值数据上构建任意监督学习模型的一个重要方面是理解特征。查看模型的部分依赖图可帮助理解任意特征对模型输出的影响。 图源:http://scikit-learn.org/stable/auto_examples/ensemble/plot_partial_dependence.html 但是,部分依赖图存在一个问题,即它们是使用训练好的模型创建的。如果我们可以从训练数据中直接创建部分依赖图,那么它将帮助我们更好地理解底层数据。事实上,它能够帮助你做好以下事情: ●特征理解 ●识别带噪声的特征 ●特征工程 ●特征重要性 ●特征 debug ●泄露检测和理解 ●模型监控 为了使其更加易于使用,作者将这些技术封装进一个 Python 包 featexp 中,本文将介绍如何使用它进行特征探索。本文使用的是 Kaggle Home Credit Default Risk 竞赛的应用数据集。该竞赛的任务是使用给定数据预测违约者。 featexp:https://github.com/abhayspawar/featexp 1. 特征理解 特征散点图 vs. 无用的目标 如果依赖变量(目标)是二元的...

用Python实现马尔可夫链蒙特卡罗

在过去的几个月里,我在数据科学领域里遇到一个术语:马尔可夫链蒙特卡罗(MCMC)。在博客或文章里,每次看到这个语,我都会摇摇头,有几次我试着学习MCMC和贝叶斯推理,但每次一开始,就很快放弃了。我学习新技术的方式都是把它应用到一个实际问题上。 通过使用一些数据和一本应用实战的书(Bayesian Methods for Hackers),我终于通过一个实际项目弄懂了MCMC。像往常一样,当把这些技术概念应用到实际问题中时,理解它们要比阅读书上的抽象概念更容易。本文通过介绍Python中的MCMC实现过程,最终教会了我使用这个强大的建模和分析工具。 本项目的完整代码和相关数据在GitHub上可以找到。本文重点讨论了应用程序和结果,涵盖了很多有深度的内容。 介绍 实际生活中的数据永远不是完美的,但我们仍然可以通过正确的模型从噪音数据中提取有价

相关文章

发表评论

资源下载

更多资源
Mario

Mario

马里奥是站在游戏界顶峰的超人气多面角色。马里奥靠吃蘑菇成长,特征是大鼻子、头戴帽子、身穿背带裤,还留着胡子。与他的双胞胎兄弟路易基一起,长年担任任天堂的招牌角色。

腾讯云软件源

腾讯云软件源

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云软件源站来提升依赖包的安装速度。为了方便用户自由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

Rocky Linux

Rocky Linux

Rocky Linux(中文名:洛基)是由Gregory Kurtzer于2020年12月发起的企业级Linux发行版,作为CentOS稳定版停止维护后与RHEL(Red Hat Enterprise Linux)完全兼容的开源替代方案,由社区拥有并管理,支持x86_64、aarch64等架构。其通过重新编译RHEL源代码提供长期稳定性,采用模块化包装和SELinux安全架构,默认包含GNOME桌面环境及XFS文件系统,支持十年生命周期更新。

Sublime Text

Sublime Text

Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text 的主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。Sublime Text 是一个跨平台的编辑器,同时支持Windows、Linux、Mac OS X等操作系统。

用户登录
用户注册