展望物联网市场:机器学习能力定生死
机器哪怕价值上亿,也无法替代医生来治病救人;但一个25美元的可穿戴设备却知道你什么时候该去看医生。 1996 年,美国芝加哥的库克郡医院急诊室采用了一种算法来判断出现胸痛症状的患者中,哪些面临更高的心脏病发作风险,是否在医院床位紧缺的情况下有住院的充分理由。该算法严格按照流程执行系统的基础测试,被证明不但快速高效,且及其精准。相比单纯依赖医生的判断,该算法判定的低风险患者数量多了 70%,而高风险患者数量则达到实际数量的 95%(医生判断仅为 75-89%)。这真是让人惊叹——要知道那个年代,深度运算还未问世呢。 想象当前,仅今年在使用的 IoT 设备就几近 64 亿个——全球平均每人一台。这么庞大的数量,哪怕只有 1% 能通过脉搏、饮食和睡眠数据来判断用户健康状况的话,那么全球能够及时治疗的患者数量会是之前的 5 倍。 但真正了不起的还是机器学习能力,它不止广泛应用算法那么简单,而是通过收集的大量数据,觉察出拥有几十年从医经验者都难以发现的症状。想象一下, Fitbit(美国健康追踪器品牌)觉察到用户脉搏异常,显示出强烈的心脏发病征兆,于是提醒用户及时就医。机器学习就意味着居家用品也...