Flink中的多source+event watermark测试
这次需要做一个监控项目,全网日志的指标计算,上线的话,计算量应该是百亿/天
单个source对应的sql如下
最原始的sql select pro,throwable,level,ip,`count`,id,`time`,firstl,lastl from ( select pro,throwable,level,ip, count(*) as `count`, lastStrInGroupSkipNull(CONCAT_WS('_',KAFKA_TOPIC,CAST(KAFKA_PARTITION AS VARCHAR),CAST(KAFKA_OFFSET as VARCHAR))) as id, firstLong(l) as firstl, lastLong(l) as lastl, TUMBLE_END(SPT, INTERVAL '3' SECOND) as `time` from input.`ymm-appmetric-dev-self1` where pro IS NOT NULL and throwable IS NOT NULL and level IS NOT NULL and level='ERROR' and ip IS NOT NULL group by pro,throwable,level,ip,TUMBLE(SPT,INTERVAL '3' SECOND) ) where 1=uniqueWithin100MS(pro,throwable,level,ip,`time`)
---先做技术论证,写了下面一个sql
select pro,throwable,level,ip,`count`,id,`time`,firstl,lastl from ( select pro,throwable,level,ip,count(*) as `count`, lastStrInGroupSkipNull(CONCAT_WS('_',KAFKA_TOPIC,CAST(KAFKA_PARTITION AS VARCHAR),CAST(KAFKA_OFFSET as VARCHAR))) as id, firstLong(l) as firstl, lastLong(l) as lastl, TUMBLE_END(SPT, INTERVAL '3' SECOND) as `time` from ( select pro,throwable,level,ip from input.`ymm-appmetric-dev-self1` where pro IS NOT NULL and throwable IS NOT NULL and level IS NOT NULL and level='ERROR' and ip IS NOT NULL union select pro,throwable,level,ip from input.`ymm-appmetric-dev-self2` where pro IS NOT NULL and throwable IS NOT NULL and level IS NOT NULL and level='ERROR' and ip IS NOT NULL ) group by pro,throwable,level,ip,TUMBLE(SPT,INTERVAL '3' SECOND) ) where 1=uniqueWithin100MS(pro,throwable,level,ip,`time`)
然后拉起flink任务,观察是否可顺利启动---果然报错了
Caused by: org.apache.calcite.sql.validate.SqlValidatorException: Column 'SPT' not found in any table
定位一下,看看是什么问题导致的,看了下之前写的sql,猜测是因为UNION的时候,没有在每个表里带上SPT时间属性字段以及其它字段,补上后sql如下
select pro,throwable,level,ip,`count`,id,`time`,firstl,lastl from ( select pro,throwable,level,ip,count(*) as `count`, lastStrInGroupSkipNull(CONCAT_WS('_',KAFKA_TOPIC,CAST(KAFKA_PARTITION AS VARCHAR),CAST(KAFKA_OFFSET as VARCHAR))) as id, firstLong(l) as firstl, lastLong(l) as lastl, TUMBLE_END(SPT, INTERVAL '3' SECOND) as `time` from ( select pro,throwable,level,ip,l,KAFKA_TOPIC,KAFKA_PARTITION,KAFKA_OFFSET,SPT from input.`ymm-appmetric-dev-self1` where pro IS NOT NULL and throwable IS NOT NULL and level IS NOT NULL and level='ERROR' and ip IS NOT NULL union select pro,throwable,level,ip,l,KAFKA_TOPIC,KAFKA_PARTITION,KAFKA_OFFSET,SPT from input.`ymm-appmetric-dev-self2` where pro IS NOT NULL and throwable IS NOT NULL and level IS NOT NULL and level='ERROR' and ip IS NOT NULL ) group by pro,throwable,level,ip,TUMBLE(SPT,INTERVAL '3' SECOND) ) where 1=uniqueWithin100MS(pro,throwable,level,ip,`time`)
再重启看看,这次应该差不多了吧---sql可以顺利编译,但是还是有错
奇怪了,之前并没有这样的错误,赞,我们来看看问题在哪!
我们打开类的层次图如下
借这个机会加强对这些类的理解!
---经过我的调试,发现问题出现在union上,不加这个Union,啥事没有;加了就报错,下面我们再回到调用栈看看
一个人调试了一个下午,-_-||,最终发现知道修改一个地方就行
union -> union all
厉害了,给大佬低头!
----好,既然解决了,我们继续来debug原理层!
测试了一下,发现多source跟单source相比,单source的watermark很好理解,但是多source就稍微复杂些,下面我们来研究下原理!
首先,观察一下现有的图,如下所示:
下面再来研究一下线程,jstack一把
我们来分析上面的线程,看看有没有收获!挑几个重点线程讲解
"VM Periodic Task Thread" os_prio=0 tid=0x00007f366825e800 nid=0x63d waiting on condition 百度可以知道 该线程是JVM周期性任务调度的线程,它由WatcherThread创建,是一个单例对象。该线程在JVM内使用得比较频繁,比如:定期的内存监控、JVM运行状况监控。
下面几个是GC线程 "Gang worker#0 (Parallel GC Threads)" os_prio=0 tid=0x00007f3668031800 nid=0x626 runnable "Gang worker#1 (Parallel GC Threads)" os_prio=0 tid=0x00007f3668033800 nid=0x627 runnable "Gang worker#2 (Parallel GC Threads)" os_prio=0 tid=0x00007f3668035800 nid=0x628 runnable "Gang worker#3 (Parallel GC Threads)" os_prio=0 tid=0x00007f3668037800 nid=0x629 runnable "Gang worker#4 (Parallel GC Threads)" os_prio=0 tid=0x00007f3668039800 nid=0x62a runnable "Gang worker#5 (Parallel GC Threads)" os_prio=0 tid=0x00007f366803b000 nid=0x62b runnable "Gang worker#6 (Parallel GC Threads)" os_prio=0 tid=0x00007f366803d000 nid=0x62c runnable "Gang worker#7 (Parallel GC Threads)" os_prio=0 tid=0x00007f366803f000 nid=0x62d runnable "Concurrent Mark-Sweep GC Thread" os_prio=0 tid=0x00007f36680b7000 nid=0x630 runnable "Gang worker#0 (Parallel CMS Threads)" os_prio=0 tid=0x00007f36680b2800 nid=0x62e runnable "Gang worker#1 (Parallel CMS Threads)" os_prio=0 tid=0x00007f36680b4800 nid=0x62f runnable
---
"main" #1 prio=5 os_prio=0 tid=0x00007f3668019800 nid=0x625 waiting on condition [0x00007f3670010000] 主线程,在flink内部等待所有事情结束
"New I/O worker #1" #24 prio=5 os_prio=0 tid=0x00007f366995f000 nid=0x648 runnable [0x00007f3642cd1000] 内部netty线程
---
"Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #51 prio=5 os_prio=0 tid=0x00007f363d11a800 nid=0x65e in Object.wait() [0x00007f3641ac3000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) at java.lang.Object.wait(Object.java:502) at org.apache.flink.streaming.connectors.kafka.internal.Handover.pollNext(Handover.java:74) - locked <0x00000000e6ee2df0> (a java.lang.Object) at org.apache.flink.streaming.connectors.kafka.internal.Kafka09Fetcher.runFetchLoop(Kafka09Fetcher.java:133) at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:721) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:87) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:56) at org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run(SourceStreamTask.java:99) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:306) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:703) at java.lang.Thread.run(Thread.java:748) "Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #50 prio=5 os_prio=0 tid=0x00007f363d120800 nid=0x65d in Object.wait() [0x00007f3641bc4000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) at java.lang.Object.wait(Object.java:502) at org.apache.flink.streaming.connectors.kafka.internal.Handover.pollNext(Handover.java:74) - locked <0x00000000e6ee2e98> (a java.lang.Object) at org.apache.flink.streaming.connectors.kafka.internal.Kafka09Fetcher.runFetchLoop(Kafka09Fetcher.java:133) at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:721) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:87) at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:56) at org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run(SourceStreamTask.java:99) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:306) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:703) at java.lang.Thread.run(Thread.java:748)
有2个线程是用来获取消息,对于这2个线程来说,这2个消息不是直接读取kafka,而是其它线程读取kafka喂给这2个线程
---
"time attribute: (SPT) (1/1)" #53 prio=5 os_prio=0 tid=0x00007f363d8e4000 nid=0x662 in Object.wait() [0x00007f36418c1000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) at java.lang.Object.wait(Object.java:502) at org.apache.flink.runtime.io.network.partition.consumer.UnionInputGate.waitAndGetNextInputGate(UnionInputGate.java:205) - locked <0x00000000e6ee8210> (a java.util.ArrayDeque) at org.apache.flink.runtime.io.network.partition.consumer.UnionInputGate.getNextBufferOrEvent(UnionInputGate.java:163) at org.apache.flink.streaming.runtime.io.BarrierTracker.getNextNonBlocked(BarrierTracker.java:94) at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:209) at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:103) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:306) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:703) at java.lang.Thread.run(Thread.java:748) 这个线程对应了我们sql里的union算子
---
"groupBy: (pro, throwable, level, ip), window: (TumblingGroupWindow('w$, 'SPT, 3000.millis)), select: (pro, throwable, level, ip, COUNT(*) AS count, lastStrInGroupSkipNull($f5) AS id, firstLong(l) AS firstl, lastLong(l) AS lastl, start('w$) AS w$start, end('w$) AS w$end, rowtime('w$) AS w$rowtime, proctime('w$) AS w$proctime) -> where: (=(1, uniqueWithin100MS(pro, throwable, _UTF-16LE'ERROR', ip, w$end))), select: (pro, throwable, level, ip, count, id, w$end AS time, firstl, lastl) -> to: Row -> Sink: Kafka010JsonTableSink(pro, throwable, level, ip, count, id, time, firstl, lastl) (1/1)" #54 prio=5 os_prio=0 tid=0x00007f363fde3800 nid=0x664 in Object.wait() [0x00007f3641127000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) at java.lang.Object.wait(Object.java:502) at org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.getNextBufferOrEvent(SingleInputGate.java:533) - locked <0x00000000e6ee2d48> (a java.util.ArrayDeque) at org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.getNextBufferOrEvent(SingleInputGate.java:502) at org.apache.flink.streaming.runtime.io.BarrierTracker.getNextNonBlocked(BarrierTracker.java:94) at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:209) at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:103) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:306) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:703) at java.lang.Thread.run(Thread.java:748) 这个对应了group by算子
---生产者
"kafka-producer-network-thread | producer-1" #55 daemon prio=5 os_prio=0 tid=0x00007f364d0f0800 nid=0x667 runnable [0x00007f3640a26000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:93) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked <0x00000000e6ef3358> (a sun.nio.ch.Util$3) - locked <0x00000000e6ef3340> (a java.util.Collections$UnmodifiableSet) - locked <0x00000000e6eedbd8> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97) at org.apache.kafka.common.network.Selector.select(Selector.java:489) at org.apache.kafka.common.network.Selector.poll(Selector.java:298) at org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:349) at org.apache.kafka.clients.producer.internals.Sender.run(Sender.java:225) at org.apache.kafka.clients.producer.internals.Sender.run(Sender.java:126) at java.lang.Thread.run(Thread.java:748) 对应着生产者,直连kafka
---
"Time Trigger for Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #57 daemon prio=5 os_prio=0 tid=0x00007f364d264800 nid=0x669 waiting on condition [0x00007f3640624000] java.lang.Thread.State: TIMED_WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x00000000e6ef84c0> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:2078) at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:1093) at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:809) at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1067) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1127) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) "Time Trigger for Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #56 daemon prio=5 os_prio=0 tid=0x00007f363e937800 nid=0x668 waiting on condition [0x00007f3640725000] java.lang.Thread.State: TIMED_WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x00000000e6ee2bc8> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:2078) at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:1093) at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:809) at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1067) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1127) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) 每个流对应着一个水印定时发送线程,因为我这边的输入是2个流 所以有2个水印发送线程
---
"Kafka Partition Discovery for Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #61 prio=5 os_prio=0 tid=0x00007f364d25f000 nid=0x66c waiting on condition [0x00007f3640121000] java.lang.Thread.State: TIMED_WAITING (sleeping) at java.lang.Thread.sleep(Native Method) at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase$2.run(FlinkKafkaConsumerBase.java:701) at java.lang.Thread.run(Thread.java:748) "Kafka Partition Discovery for Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #59 prio=5 os_prio=0 tid=0x00007f363f4bc800 nid=0x66a waiting on condition [0x00007f3640323000] java.lang.Thread.State: TIMED_WAITING (sleeping) at java.lang.Thread.sleep(Native Method) at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase$2.run(FlinkKafkaConsumerBase.java:701) at java.lang.Thread.run(Thread.java:748) 2个自动分区发现线程
---
"Kafka 0.10 Fetcher for Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #60 daemon prio=5 os_prio=0 tid=0x00007f364d269800 nid=0x66d runnable [0x00007f363bffe000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:93) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked <0x00000000e73f0888> (a sun.nio.ch.Util$3) - locked <0x00000000e73f0870> (a java.util.Collections$UnmodifiableSet) - locked <0x00000000e7279b20> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97) at org.apache.kafka.common.network.Selector.select(Selector.java:489) at org.apache.kafka.common.network.Selector.poll(Selector.java:298) at org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:349) at org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:226) - locked <0x00000000e7497ec0> (a org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient) at org.apache.kafka.clients.consumer.KafkaConsumer.pollOnce(KafkaConsumer.java:1047) at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:995) at org.apache.flink.streaming.connectors.kafka.internal.KafkaConsumerThread.run(KafkaConsumerThread.java:257) "Kafka 0.10 Fetcher for Source: MyKafka010JsonTableSource -> from: (l, KAFKA_TOPIC, KAFKA_PARTITION, KAFKA_OFFSET, pro, throwable, level, ip, SPT) -> Timestamps/Watermarks -> where: (AND(=(level, _UTF-16LE'ERROR'), IS NOT NULL(pro), IS NOT NULL(throwable), IS NOT NULL(ip))), select: (pro, throwable, CAST(_UTF-16LE'ERROR') AS level, ip, SPT, CONCAT_WS(_UTF-16LE'_', KAFKA_TOPIC, CAST(KAFKA_PARTITION), CAST(KAFKA_OFFSET)) AS $f5, l) (1/1)" #58 daemon prio=5 os_prio=0 tid=0x00007f363f4be800 nid=0x66b runnable [0x00007f3640222000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:93) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked <0x00000000e6ef0758> (a sun.nio.ch.Util$3) - locked <0x00000000e6ef0740> (a java.util.Collections$UnmodifiableSet) - locked <0x00000000e6ee0248> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97) at org.apache.kafka.common.network.Selector.select(Selector.java:489) at org.apache.kafka.common.network.Selector.poll(Selector.java:298) at org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:349) at org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:226) - locked <0x00000000e6f03398> (a org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient) at org.apache.kafka.clients.consumer.KafkaConsumer.pollOnce(KafkaConsumer.java:1047) at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:995) at org.apache.flink.streaming.connectors.kafka.internal.KafkaConsumerThread.run(KafkaConsumerThread.java:257) 对应着2个直连kafka的生产者线程
线程debug完了,下面我们来看每个线程做什么事情!这里先简单交代一下消息记录和watermark的背景
对于每个流,有1个消费者线程来读取kafka的消息 然后通过本地内存交换,喂给另外一个线程,就是文中Handover字样的线程,这个线程会把消息往下游发送,同时,有1个水印线程定时探测是否有更大时间戳出现,出现的话,把这个时间戳放在一个水印事件里下广播给下游.
---下面先来debug下Handover线程,看看是如何消息喂给unionInputGate线程的
断点在
stop at org.apache.flink.streaming.connectors.kafka.internal.Kafka09Fetcher:154
跑起来!
然后,发送一条消息到kafka,断点顺利命中
接下来就是具体看消息的流转过程!
消息处理过程中,会记录下当前事件的时间戳,位置在
作用是如果时间戳比当前值更大,则更新这个时间戳,后面会有水印线程定时读取这个值决定是否需要发送水印信息
好,继续观察消息的流动,执行到了下面这个地方
[1] org.apache.flink.runtime.io.network.api.writer.RecordWriter.emit (RecordWriter.java:104) [2] org.apache.flink.streaming.runtime.io.StreamRecordWriter.emit (StreamRecordWriter.java:81) [3] org.apache.flink.streaming.runtime.io.RecordWriterOutput.pushToRecordWriter (RecordWriterOutput.java:107) [4] org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect (RecordWriterOutput.java:89) [5] org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect (RecordWriterOutput.java:45) [6] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [7] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [8] org.apache.flink.streaming.api.operators.TimestampedCollector.collect (TimestampedCollector.java:51) [9] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:37) [10] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:28) [11] DataStreamCalcRule$69.processElement (null) [12] org.apache.flink.table.runtime.CRowProcessRunner.processElement (CRowProcessRunner.scala:66) [13] org.apache.flink.table.runtime.CRowProcessRunner.processElement (CRowProcessRunner.scala:35) [14] org.apache.flink.streaming.api.operators.ProcessOperator.processElement (ProcessOperator.java:66) [15] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator (OperatorChain.java:560) [16] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:535) [17] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:515) [18] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [19] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [20] org.apache.flink.streaming.runtime.operators.TimestampsAndPeriodicWatermarksOperator.processElement (TimestampsAndPeriodicWatermarksOperator.java:67) [21] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator (OperatorChain.java:560) [22] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:535) [23] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:515) [24] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [25] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [26] org.apache.flink.streaming.api.operators.TimestampedCollector.collect (TimestampedCollector.java:51) [27] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:37) [28] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:28) [29] DataStreamSourceConversion$23.processElement (null) [30] org.apache.flink.table.runtime.CRowOutputProcessRunner.processElement (CRowOutputProcessRunner.scala:67) [31] org.apache.flink.streaming.api.operators.ProcessOperator.processElement (ProcessOperator.java:66) [32] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator (OperatorChain.java:560) [33] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:535) [34] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:515) [35] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [36] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [37] org.apache.flink.streaming.api.operators.StreamSourceContexts$ManualWatermarkContext.processAndCollectWithTimestamp (StreamSourceContexts.java:310) [38] org.apache.flink.streaming.api.operators.StreamSourceContexts$WatermarkContext.collectWithTimestamp (StreamSourceContexts.java:409) [39] org.apache.flink.streaming.connectors.kafka.internals.AbstractFetcher.emitRecordWithTimestamp (AbstractFetcher.java:398) [40] org.apache.flink.streaming.connectors.kafka.internal.Kafka010Fetcher.emitRecord (Kafka010Fetcher.java:89) [41] org.apache.flink.streaming.connectors.kafka.internal.Kafka09Fetcher.runFetchLoop (Kafka09Fetcher.java:154) [42] org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run (FlinkKafkaConsumerBase.java:721) [43] org.apache.flink.streaming.api.operators.StreamSource.run (StreamSource.java:87) [44] org.apache.flink.streaming.api.operators.StreamSource.run (StreamSource.java:56) [45] org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run (SourceStreamTask.java:99) [46] org.apache.flink.streaming.runtime.tasks.StreamTask.invoke (StreamTask.java:306) [47] org.apache.flink.runtime.taskmanager.Task.run (Task.java:703) [48] java.lang.Thread.run (Thread.java:748)
看一下这里的即将执行的代码
public void emit(T record) throws IOException, InterruptedException { for (int targetChannel : channelSelector.selectChannels(record, numChannels)) { sendToTarget(record, targetChannel); } }
这里的print numChannels
numChannels = 1 --->因为我们有一个union操作,union自然是所有源归一!这就对了!
---最后放入消息并提醒消费线程,完整的调用栈如下:
[1] org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.queueChannel (SingleInputGate.java:623) [2] org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.notifyChannelNonEmpty (SingleInputGate.java:612) [3] org.apache.flink.runtime.io.network.partition.consumer.InputChannel.notifyChannelNonEmpty (InputChannel.java:121) [4] org.apache.flink.runtime.io.network.partition.consumer.LocalInputChannel.notifyDataAvailable (LocalInputChannel.java:202) [5] org.apache.flink.runtime.io.network.partition.PipelinedSubpartitionView.notifyDataAvailable (PipelinedSubpartitionView.java:56) [6] org.apache.flink.runtime.io.network.partition.PipelinedSubpartition.notifyDataAvailable (PipelinedSubpartition.java:290) [7] org.apache.flink.runtime.io.network.partition.PipelinedSubpartition.flush (PipelinedSubpartition.java:76) [8] org.apache.flink.runtime.io.network.partition.ResultPartition.flush (ResultPartition.java:269) [9] org.apache.flink.runtime.io.network.api.writer.RecordWriter.sendToTarget (RecordWriter.java:149) [10] org.apache.flink.runtime.io.network.api.writer.RecordWriter.emit (RecordWriter.java:105) [11] org.apache.flink.streaming.runtime.io.StreamRecordWriter.emit (StreamRecordWriter.java:81) [12] org.apache.flink.streaming.runtime.io.RecordWriterOutput.pushToRecordWriter (RecordWriterOutput.java:107) [13] org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect (RecordWriterOutput.java:89) [14] org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect (RecordWriterOutput.java:45) [15] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [16] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [17] org.apache.flink.streaming.api.operators.TimestampedCollector.collect (TimestampedCollector.java:51) [18] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:37) [19] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:28) [20] DataStreamCalcRule$69.processElement (null) [21] org.apache.flink.table.runtime.CRowProcessRunner.processElement (CRowProcessRunner.scala:66) [22] org.apache.flink.table.runtime.CRowProcessRunner.processElement (CRowProcessRunner.scala:35) [23] org.apache.flink.streaming.api.operators.ProcessOperator.processElement (ProcessOperator.java:66) [24] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator (OperatorChain.java:560) [25] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:535) [26] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:515) [27] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [28] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [29] org.apache.flink.streaming.runtime.operators.TimestampsAndPeriodicWatermarksOperator.processElement (TimestampsAndPeriodicWatermarksOperator.java:67) [30] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator (OperatorChain.java:560) [31] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:535) [32] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:515) [33] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [34] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [35] org.apache.flink.streaming.api.operators.TimestampedCollector.collect (TimestampedCollector.java:51) [36] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:37) [37] org.apache.flink.table.runtime.CRowWrappingCollector.collect (CRowWrappingCollector.scala:28) [38] DataStreamSourceConversion$23.processElement (null) [39] org.apache.flink.table.runtime.CRowOutputProcessRunner.processElement (CRowOutputProcessRunner.scala:67) [40] org.apache.flink.streaming.api.operators.ProcessOperator.processElement (ProcessOperator.java:66) [41] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator (OperatorChain.java:560) [42] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:535) [43] org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect (OperatorChain.java:515) [44] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:679) [45] org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect (AbstractStreamOperator.java:657) [46] org.apache.flink.streaming.api.operators.StreamSourceContexts$ManualWatermarkContext.processAndCollectWithTimestamp (StreamSourceContexts.java:310) [47] org.apache.flink.streaming.api.operators.StreamSourceContexts$WatermarkContext.collectWithTimestamp (StreamSourceContexts.java:409) [48] org.apache.flink.streaming.connectors.kafka.internals.AbstractFetcher.emitRecordWithTimestamp (AbstractFetcher.java:398) [49] org.apache.flink.streaming.connectors.kafka.internal.Kafka010Fetcher.emitRecord (Kafka010Fetcher.java:89) [50] org.apache.flink.streaming.connectors.kafka.internal.Kafka09Fetcher.runFetchLoop (Kafka09Fetcher.java:154) [51] org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run (FlinkKafkaConsumerBase.java:721) [52] org.apache.flink.streaming.api.operators.StreamSource.run (StreamSource.java:87) [53] org.apache.flink.streaming.api.operators.StreamSource.run (StreamSource.java:56) [54] org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run (SourceStreamTask.java:99) [55] org.apache.flink.streaming.runtime.tasks.StreamTask.invoke (StreamTask.java:306) [56] org.apache.flink.runtime.taskmanager.Task.run (Task.java:703) [57] java.lang.Thread.run (Thread.java:748)
---水印的处理应该也是类似的,所以接下来,我们来看Union所在的线程
我们再来复习下上面里提到的这个线程的调用栈
"time attribute: (SPT) (1/1)" #53 prio=5 os_prio=0 tid=0x00007f363d8e4000 nid=0x662 in Object.wait() [0x00007f36418c1000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) at java.lang.Object.wait(Object.java:502) at org.apache.flink.runtime.io.network.partition.consumer.UnionInputGate.waitAndGetNextInputGate(UnionInputGate.java:205) - locked <0x00000000e6ee8210> (a java.util.ArrayDeque) at org.apache.flink.runtime.io.network.partition.consumer.UnionInputGate.getNextBufferOrEvent(UnionInputGate.java:163) at org.apache.flink.streaming.runtime.io.BarrierTracker.getNextNonBlocked(BarrierTracker.java:94) at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:209) at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:103) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:306) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:703) at java.lang.Thread.run(Thread.java:748) 这个线程对应了我们sql里的union算子
上面这个图,是等待有消息过来就提取消息,任何一个源有消息都会触发消息提取,否则wait
---注意:这里的消息有4种类型,一般我们只需要关注record+watermark即可
具体地点是:
---这里讲一下,关于LatencyMarker,默认2秒钟发送一次,截图如下
其它的不管是record还是watermark都会往下发送!
下面我们来在union里同时针对record和watermark打断点,猜一猜哪个断点先被触发?
断点位于【针对flink-1.5版本】
Breakpoints set: breakpoint org.apache.flink.streaming.runtime.io.StreamInputProcessor:184 breakpoint org.apache.flink.streaming.runtime.io.StreamInputProcessor:198
触发的顺序如下:
---跟想的是一样的! 下面就去研究下groupby线程
"groupBy: (pro, throwable, level, ip), window: (TumblingGroupWindow('w$, 'SPT, 3000.millis)), select: (pro, throwable, level, ip, COUNT(*) AS count, lastStrInGroupSkipNull($f5) AS id, firstLong(l) AS firstl, lastLong(l) AS lastl, start('w$) AS w$start, end('w$) AS w$end, rowtime('w$) AS w$rowtime, proctime('w$) AS w$proctime) -> where: (=(1, uniqueWithin100MS(pro, throwable, _UTF-16LE'ERROR', ip, w$end))), select: (pro, throwable, level, ip, count, id, w$end AS time, firstl, lastl) -> to: Row -> Sink: Kafka010JsonTableSink(pro, throwable, level, ip, count, id, time, firstl, lastl) (1/1)" #54 prio=5 os_prio=0 tid=0x00007f363fde3800 nid=0x664 in Object.wait() [0x00007f3641127000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) at java.lang.Object.wait(Object.java:502) at org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.getNextBufferOrEvent(SingleInputGate.java:533) - locked <0x00000000e6ee2d48> (a java.util.ArrayDeque) at org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.getNextBufferOrEvent(SingleInputGate.java:502) at org.apache.flink.streaming.runtime.io.BarrierTracker.getNextNonBlocked(BarrierTracker.java:94) at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:209) at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:103) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:306) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:703) at java.lang.Thread.run(Thread.java:748) 这个对应了group by算子
针对group by来说,最重要的环节,这个其实跟union线程一样的,也是在
org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput
这里面来做事件的分发,所以断点都是一样的
---
这里主要强调,在groupby处理watermark时的位置如下:【尤其是针对多个source来说,很容易出问题】
这个时候,我意识到在groupby线程中来观察watermark还早了点,因为在union线程中针对watermark的处理还有一些秘密
所以我们回到union线程来挖这些秘密,把groupby线程用suspend命令挂起来,专门debug union线程即可!
---打个断点【针对flink-1.5】
stop at org.apache.flink.streaming.runtime.io.StreamInputProcessor:184
研究了一把,大致明白原理了,这么说吧,线程模型如下
流1------- | | | | | |---------->union线程的watermark--------->groupby线程的watermark | | | | 流2-------
其中,流1和流2---每次都发送自己看到的最大时间戳发送个下游(看到小的就什么都不做)
union这里会动态更新流1和流2的各自所看到的最大时间戳,同时取Min(流1的最大时间戳,流2的最大时间戳),跟上一次的值比较
如果>上一次的Min值,则发送给group by.
---我觉得读者看到这里,肯定已经懵逼了,我来解释下思想
强调一下:消息在中间过程中不拦截,直达最后的windowoperator那里做windowLate判断决定是否丢弃! =========================================================================================== 对于流1来说,它每次发送自己已知的最大时间戳给下游,就是说“你好,下游,对我来说小于这个时间戳的就算是延迟消息,你看着办” 对于流2来说,它每次发送自己已知的最大时间戳给下游,就是说“你好,下游,对我来说小于这个时间戳的就算是延迟消息,你看着办” ---对于union来说,这里复杂些 它取值min( 流1的max时间戳,流2的max时间戳)跟上一次的min( 流1的max时间戳,流2的max时间戳)比较, 如果发现递增了,就把当前较大的这个min值发送给下游,说“你好,下游,全局来说,对我来说小于这个时间戳的就算是延迟消息,我只能帮到这里了,已经尽力拖住时间戳了,你看着办” ---对于groupby来说,它收到时间戳,每次保留最大值,然后参考最大值来快速决定每个消息是不是延迟消息(最大值-可容忍的延迟消息)。 所以,在多源情况下,判断全局一个消息是不是延迟消息,实际上由min( 流1的max时间戳,流2的max时间戳)这个值来参与决定 --- 我们再跳出来想一想这个事情,我估计读者最懵逼的地方就是union为啥取每个流的最小值,而不是最大值 我们就这么理解吧,如果取最大值,那消费慢的流的数据大部分都成为了late数据被丢弃,union就会被打 所以union为了防止被打,它不想惹众怒,就取了min(每个流),这样所有人都无话可说了 union旁白:我都取了你们每个流的各自的时间戳最大值的全局最小值,还要我怎么样, 最慢的那个流也不会说啥了,因为取的就是它这个流上报的自身最大值。 上面都是从技术角度来阐述这个事情,那么我们再拔高一下,从更高的层次来看这个事情 其实就是让更多的数据没有成为late数据,纳入正常运算范围内,由min( 流1的max时间戳,流2的max时间戳)的递增来推动全局windowoperator的计算输出结果. 相应的,消费最慢的流会拖累最终业务数据的延迟生成.
---读者可以再细细琢磨里面的门道,下面我们来做逻辑测试!验证我们是否真正理解了这个游戏规则!
背景:容忍延迟3000毫秒 下面每行的格式就是:流名称 + 时间戳 ,每次只输出1条 1)流1 + 1545703896000 2)流1 + 1545703896000 3)流2 + 1545703896000 4)流2 + 1545703898999 5)流2 + 1545703899000 6)流1 + 1545703899000 7)流1 + 1545703900000 8)流2 + 1545703902000-1 --->这个不会触发windowOperator的输出,因为流1的最小值还不够 9)流1 + 1545703902000-1 --->这个才会触发windowOperator的输出 正确输出了,记住,一定要2个流 【齐头并进,理实交融】
但是,其实,仅仅研究到这一步,并没有完全结束,欲知后事如何请听下回分解 :)
低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。
持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。
转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。
- 上一篇
Pytext简介:facebook的基于PyTorch的NLP框架
自然语言处理(NLP)在现代深度学习生态中越来越常见。从流行的深度学习框架到云端API的支持,例如Google云、Azure、AWS或Bluemix,NLP是深度学习平台不可或缺的部分。尽管已经取得了令人难以置信的进步,但构建大规模的NLP应用依然还有极大的挑战,在学习研究和生产部署之间还存在很多摩擦。作为当前市场上最大的会话环境之一,Facebook已经面对构建大规模NLP应用的挑战有一些年头了,最近,Facebook的工程团队开源了第一个版本的Pytext,一个基于PyTorch的NLP框架,可以用来构建高效的NLP解决方案。 PyText的最终目标是简化端对端的NLP工作流实现。为了实现这一目标,PyText需要解决当前NLP流程中的一些问题,其中最令人头疼的就是NLP应用在实验环境和生产环境的不匹配问题。 更好地平衡NLP实验和生产部署 现代NLP解决方案通常包含非常重的实验环节,在这个阶段数据科学家们将借鉴研究文件快速测试新的想法和模型,以便达成一定的性能指标。在实验阶段,数据科学家倾向于使用容易上手、界面简单的框架,以便快速实现高级、动态的模型,例如PyTorch或Tens...
- 下一篇
单一职责原则
个人博客原文: 单一职责原则 设计模式六大原则之一:单一职责原则 简介 姓名 :单一职责原则 英文名 :Single Responsibility Principle 座右铭 :There should never be more than one reason for a class to change. 应当有且仅有一个原因引起类的变更。。。意思就是不管干啥,我都只干一件事,你叫我去买菜,我就只买菜,叫我顺便去倒垃圾就不干了,就这么拽 脾气 :一个字“拽”,两个字“特拽“ 伴侣 :老子职责单一,哪来的伴侣? 个人介绍 :在这个人兼多责的社会里,我显得那么的特立独行,殊不知,现在社会上发生的很多事情都是因为没有处理好职责导致的,比如,经常有些父母带着小孩,一边玩手机,导致小孩弄丢、发生事故等等 单一职责应用范围 单一职责原则适用的范围有接口、方法、类。按大家的说法,接口和方法必须保证单一职责,类就不必保证,只要符合业务就行。 方法 设想一下这个场景:假设我们要做一个用户修改名字以及修改密码的功能,可以有多种实现方案,比如下面列举 2 种实现方式 代码:SrpOfMethod.java...
相关文章
文章评论
共有0条评论来说两句吧...
文章二维码
点击排行
推荐阅读
最新文章
- SpringBoot2配置默认Tomcat设置,开启更多高级功能
- Linux系统CentOS6、CentOS7手动修改IP地址
- Docker安装Oracle12C,快速搭建Oracle学习环境
- CentOS8安装MyCat,轻松搞定数据库的读写分离、垂直分库、水平分库
- CentOS6,CentOS7官方镜像安装Oracle11G
- CentOS7安装Docker,走上虚拟化容器引擎之路
- Jdk安装(Linux,MacOS,Windows),包含三大操作系统的最全安装
- 设置Eclipse缩进为4个空格,增强代码规范
- Eclipse初始化配置,告别卡顿、闪退、编译时间过长
- 2048小游戏-低调大师作品