在介绍KMP算法之前,先介绍一下BF算法。
BF算法
BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。
举例说明:
S: ababcababa
P: ababa
BF算法匹配的步骤如下
KMP算法
在介绍KMP算法之前,先介绍一下BF算法。
一.BF算法
BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。
举例说明:
S: ababcababa
P: ababa
BF算法匹配的步骤如下
![image image]()
int BFMatch(char *s,char *p)
{
int i,j;
i=0;
while(i<strlen(s))
{
j=0;
while(s[i]==p[j]&&j<strlen(p))
{
i++;
j++;
}
if(j==strlen(p))
return i-strlen(p);
i=i-j+1; //指针i回溯
}
return -1;
}
其实在上面的匹配过程中,有很多比较是多余的。在第五趟匹配失败的时候,在第六趟,i可以保持不变,j值为2。因为在前面匹配的过程中,对于串S,已知s0s1s2s3=p0p1p2p3,又因为p0!=p1!,所以第六趟的匹配是多余的。又由于p0==p2,p1==p3,所以第七趟和第八趟的匹配也是多余的。在KMP算法中就省略了这些多余的匹配。
KMP算法
其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。
在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。
对于next[]数组的定义如下:
1) next[j] = -1 j = 0
2) next[j] = max(k): 0<k<j P[0...k-1]=P[j-k,j-1]
3) next[j] = 0 其他
如:
P a b a b a
j 0 1 2 3 4
next -1 0 0 1 2
即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]
因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。
代码实现如下:
int KMPMatch(char *s,char *p)
{
int next[100];
int i,j;
i=0;
j=0;
getNext(p,next);
while(i<strlen(s))
{
if(j==-1||s[i]==p[j])
{
i++;
j++;
}
else
{
j=next[j]; //消除了指针i的回溯
}
if(j==strlen(p))
return i-strlen(p);
}
return -1;
}
因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。
根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1]
1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1;
2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。
因此可以这样去实现:
void getNext(char *p,int *next)
{
int j,k;
next[0]=-1;
j=0;
k=-1;
while(j<strlen(p)-1)
{
if(k==-1||p[j]==p[k]) //匹配的情况下,p[j]==p[k]
{
j++;
k++;
next[j]=k;
}
else //p[j]!=p[k]
k=next[k];
}
}
void getNext(char *p,int *next)
{
int i,j,temp;
for(i=0;i<strlen(p);i++)
{
if(i==0)
{
next[i]=-1; //next[0]=-1
}
else if(i==1)
{
next[i]=0; //next[1]=0
}
else
{
temp=i-1;
for(j=temp;j>0;j--)
{
if(equals(p,i,j))
{
next[i]=j; //找到最大的k值
break;
}
}
if(j==0)
next[i]=0;
}
}
}
bool equals(char *p,int i,int j) //判断p[0...j-1]与p[i-j...i-1]是否相等
{
int k=0;
int s=i-j;
for(;k<=j-1&&s<=i-1;k++,s++)
{
if(p[k]!=p[s])
return false;
}
return true;
}
Java
/**
* Java实现KMP算法
*
* 思想:每当一趟匹配过程中出现字符比较不等,不需要回溯i指针,
* 而是利用已经得到的“部分匹配”的结果将模式向右“滑动”尽可能远
* 的一段距离后,继续进行比较。
*
* 时间复杂度O(n+m)
*
*/
public class KMPTest {
public static void main(String[] args) {
String s = "abbabbbbcab"; // 主串
String t = "bbcab"; // 模式串
char[] ss = s.toCharArray();
char[] tt = t.toCharArray();
System.out.println(KMP_Index(ss, tt)); // KMP匹配字符串
}
/**
* 获得字符串的next函数值
*
* @param t
* 字符串
* @return next函数值
*/
public static int[] next(char[] t) {
int[] next = new int[t.length];
next[0] = -1;
int i = 0;
int j = -1;
while (i < t.length - 1) {
if (j == -1 || t[i] == t[j]) {
i++;
j++;
if (t[i] != t[j]) {
next[i] = j;
} else {
next[i] = next[j];
}
} else {
j = next[j];
}
}
return next;
}
/**
* KMP匹配字符串
*
* @param s
* 主串
* @param t
* 模式串
* @return 若匹配成功,返回下标,否则返回-1
*/
public static int KMP_Index(char[] s, char[] t) {
int[] next = next(t);
int i = 0;
int j = 0;
while (i <= s.length - 1 && j <= t.length - 1) {
if (j == -1 || s[i] == t[j]) {
i++;
j++;
} else {
j = next[j];
}
}
if (j < t.length) {
return -1;
} else
return i - t.length; // 返回模式串在主串中的头下标
}
}
code(C++)
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int main()
{
char t[10050],s[1000007];
int c;scanf("%d",&c);
while(c--)
{
scanf("%s%s",t,s);
int flink[10004]={};
int i=0,j=-1;
flink[0]=-1;
int len=strlen(t);
while(i<len)
{
if(j==-1 || t[i]==t[j])
flink[++i]=++j;
else
j=flink[j];
}
int ans=0;
i=j=0;
int n=len;
len=strlen(s);
while(i<len)
{
if(j==-1 || s[i]==t[j])
{
++i;++j;
}
else
{
j=flink[j];
}
if(j==n) ans++;
}
printf("%d\n",ans);
}
return 0;
}
本文转自我爱物联网博客园博客,原文链接:http://www.cnblogs.com/yydcdut/p/3873697.html如需转载请自行联系原作者