计算机视觉方向简介 | 三维深度学习中的目标分类与语义分割
三维数据的表示方法 ●point cloud:点云,也就是三维坐标系统中点的集合,这些点通常以x,y,z坐标来表示,并且一般用来表示物体的外表形状。当然,除了最基本的位置信息以外,也可以在点云中加入其他的信息,如点的色彩信息等。大多数的点云是由3D扫描设备获取的,如激光雷达,立体摄像机,深度相机等。 ●Mesh:网格,是由一组凸多边形顶点以及凸多边形表面组成的,也叫做非结构化网格。多边形网格是希望通过一种易于渲染的方式来表示三维物体模型。在三维可视化等方面有很大的作用。现在有很多种方法来将点云转换成多边形网格。 ●Voxel:体素,概念上类似于二维空间中的最小单位--像素,体素可以看作是是数字数据在三维空间分区中的最小单位,体素化是一种规格化的表示方法,在很多方面都有着重要的应用。 ●Multi-View Images:多视角图片,是通过不同视角的虚拟摄像机从物体模型中获取到的二维图像的集合。多视图通常需要使用比较多的图片来构建完整的三维模型,在固定图片数量的情况下,很容易受到物体自遮挡等因素的影响。 图1:三维模型的表示方法(来源:stanford bunny) 三维深度学习的难点...