您现在的位置是:首页 > 文章详情

清华微电子所团队提出AI芯片的存储优化新方法

日期:2018-06-06点击:506

af876514570a6153d931b5334dea194daa8a75ca

清华微电子所博士生涂锋斌报告现场

ISCA是计算机体系结构领域的顶级会议。本次大会共收到378篇投稿,收录64篇论文,录用率仅为16.9%。本文是今年中国唯一被收录的署名第一完成单位的论文。尹首一副教授为本文通讯作者,论文合作者还包括清华大学微电子所魏少军教授和刘雷波教授等。

随着人工智能应用中神经网络规模的不断增大,计算芯片的大量片外访存会造成巨大的系统能耗,因此存储优化是人工智能计算芯片设计中必须解决的一个核心问题。可重构研究团队提出一种面向神经网络的新型加速框架:数据生存时间感知的神经网络加速框架(RANA)。RANA框架采用了三个层次的优化技术:数据生存时间感知的训练方法,混合计算模式和支持刷新优化的eDRAM存储器,分别从训练、调度和架构三个层面优化整体系统能耗。实验结果显示,RANA框架可以消除99.7%的eDRAM刷新能耗开销,而性能和精度损失可以忽略不计。相比于传统的采用SRAM的人工智能计算芯片,使用RANA框架的基于eDRAM的计算芯片在面积开销相同的情况下可以减少41.7%的片外访存和66.2%的系统能耗,使人工智能系统的能量效率获得大幅提高。

8d1b0b8d8bef0550ce6ec27111006c6db20def77

数据生存时间感知的神经网络加速框架(RANA)

可重构计算团队近年来基于可重构架构设计了Thinker系列人工智能计算芯片(Thinker I,Thinker II,Thinker S),受到学术界和工业界的广泛关注。可重构计算团队此次研究成果,从存储优化和软硬件协同设计的角度大幅提升了芯片能量效率, 为人工智能计算芯片的架构演进开拓了新方向。



原文发布时间为:2018-06-7

本文来自云栖社区合作伙伴“半导体行业观察”,了解相关信息可以关注“半导体行业观察”。

原文链接:https://yq.aliyun.com/articles/600409
关注公众号

低调大师中文资讯倾力打造互联网数据资讯、行业资源、电子商务、移动互联网、网络营销平台。

持续更新报道IT业界、互联网、市场资讯、驱动更新,是最及时权威的产业资讯及硬件资讯报道平台。

转载内容版权归作者及来源网站所有,本站原创内容转载请注明来源。

文章评论

共有0条评论来说两句吧...

文章二维码

扫描即可查看该文章

点击排行

推荐阅读

最新文章