MIT深度学习最新进展:机器学会创作视频,预测人类行为
在本年度的NIPS上,MIT 计算机科学和人工智能实验室的研究员们提交了结合对抗学习和无监督学习两种方法的研究。 MIT计算机科学和人工智能实验室(CSAIL)的研究员开发了一个深度学习算法,能够自动生成视频,并预测出接下来的视频内容。 研究成果论文将在下周在巴塞罗那举行的NIPS(Conference on Neural Information Processing Systems)上发表。CSAIL的研究团队让该算法观看了200万条视频,这些视频加起来如果要回放的话,需要2年的时间才能播完。 视频包含了日常生活的常见场景,以让机器更好地适应正常的人类交流行为。更重要的是,这些视频是“野生”的,也就是说,它们都是非标签的。简单地说,就是研究员不会给算法提供理解视频内容的任何线索。 在这一视频数据集的基础上,算法将基于200万条视频中获得的观察,尝试从零开始生成视频,这和人类创作视频的步骤是一样的 。随后,生成的视频会被填入另一个深度学习算法中,新的算法负责判断哪些视频是机器生成的,哪些是“真实”的。这种训练机器的方法叫对抗式学习(adversarial learning)。 研究使用...
